Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x^{2}-48x+20=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 5\times 20}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -48 ni b va 20 ni c bilan almashtiring.
x=\frac{-\left(-48\right)±\sqrt{2304-4\times 5\times 20}}{2\times 5}
-48 kvadratini chiqarish.
x=\frac{-\left(-48\right)±\sqrt{2304-20\times 20}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-48\right)±\sqrt{2304-400}}{2\times 5}
-20 ni 20 marotabaga ko'paytirish.
x=\frac{-\left(-48\right)±\sqrt{1904}}{2\times 5}
2304 ni -400 ga qo'shish.
x=\frac{-\left(-48\right)±4\sqrt{119}}{2\times 5}
1904 ning kvadrat ildizini chiqarish.
x=\frac{48±4\sqrt{119}}{2\times 5}
-48 ning teskarisi 48 ga teng.
x=\frac{48±4\sqrt{119}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{4\sqrt{119}+48}{10}
x=\frac{48±4\sqrt{119}}{10} tenglamasini yeching, bunda ± musbat. 48 ni 4\sqrt{119} ga qo'shish.
x=\frac{2\sqrt{119}+24}{5}
48+4\sqrt{119} ni 10 ga bo'lish.
x=\frac{48-4\sqrt{119}}{10}
x=\frac{48±4\sqrt{119}}{10} tenglamasini yeching, bunda ± manfiy. 48 dan 4\sqrt{119} ni ayirish.
x=\frac{24-2\sqrt{119}}{5}
48-4\sqrt{119} ni 10 ga bo'lish.
x=\frac{2\sqrt{119}+24}{5} x=\frac{24-2\sqrt{119}}{5}
Tenglama yechildi.
5x^{2}-48x+20=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
5x^{2}-48x+20-20=-20
Tenglamaning ikkala tarafidan 20 ni ayirish.
5x^{2}-48x=-20
O‘zidan 20 ayirilsa 0 qoladi.
\frac{5x^{2}-48x}{5}=-\frac{20}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}-\frac{48}{5}x=-\frac{20}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{48}{5}x=-4
-20 ni 5 ga bo'lish.
x^{2}-\frac{48}{5}x+\left(-\frac{24}{5}\right)^{2}=-4+\left(-\frac{24}{5}\right)^{2}
-\frac{48}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{24}{5} olish uchun. Keyin, -\frac{24}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{48}{5}x+\frac{576}{25}=-4+\frac{576}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{24}{5} kvadratini chiqarish.
x^{2}-\frac{48}{5}x+\frac{576}{25}=\frac{476}{25}
-4 ni \frac{576}{25} ga qo'shish.
\left(x-\frac{24}{5}\right)^{2}=\frac{476}{25}
x^{2}-\frac{48}{5}x+\frac{576}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{24}{5}\right)^{2}}=\sqrt{\frac{476}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{24}{5}=\frac{2\sqrt{119}}{5} x-\frac{24}{5}=-\frac{2\sqrt{119}}{5}
Qisqartirish.
x=\frac{2\sqrt{119}+24}{5} x=\frac{24-2\sqrt{119}}{5}
\frac{24}{5} ni tenglamaning ikkala tarafiga qo'shish.