Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x^{2}-43x-125-7x=0
Ikkala tarafdan 7x ni ayirish.
5x^{2}-50x-125=0
-50x ni olish uchun -43x va -7x ni birlashtirish.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 5\left(-125\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -50 ni b va -125 ni c bilan almashtiring.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 5\left(-125\right)}}{2\times 5}
-50 kvadratini chiqarish.
x=\frac{-\left(-50\right)±\sqrt{2500-20\left(-125\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-50\right)±\sqrt{2500+2500}}{2\times 5}
-20 ni -125 marotabaga ko'paytirish.
x=\frac{-\left(-50\right)±\sqrt{5000}}{2\times 5}
2500 ni 2500 ga qo'shish.
x=\frac{-\left(-50\right)±50\sqrt{2}}{2\times 5}
5000 ning kvadrat ildizini chiqarish.
x=\frac{50±50\sqrt{2}}{2\times 5}
-50 ning teskarisi 50 ga teng.
x=\frac{50±50\sqrt{2}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{50\sqrt{2}+50}{10}
x=\frac{50±50\sqrt{2}}{10} tenglamasini yeching, bunda ± musbat. 50 ni 50\sqrt{2} ga qo'shish.
x=5\sqrt{2}+5
50+50\sqrt{2} ni 10 ga bo'lish.
x=\frac{50-50\sqrt{2}}{10}
x=\frac{50±50\sqrt{2}}{10} tenglamasini yeching, bunda ± manfiy. 50 dan 50\sqrt{2} ni ayirish.
x=5-5\sqrt{2}
50-50\sqrt{2} ni 10 ga bo'lish.
x=5\sqrt{2}+5 x=5-5\sqrt{2}
Tenglama yechildi.
5x^{2}-43x-125-7x=0
Ikkala tarafdan 7x ni ayirish.
5x^{2}-50x-125=0
-50x ni olish uchun -43x va -7x ni birlashtirish.
5x^{2}-50x=125
125 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{5x^{2}-50x}{5}=\frac{125}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\left(-\frac{50}{5}\right)x=\frac{125}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-10x=\frac{125}{5}
-50 ni 5 ga bo'lish.
x^{2}-10x=25
125 ni 5 ga bo'lish.
x^{2}-10x+\left(-5\right)^{2}=25+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=25+25
-5 kvadratini chiqarish.
x^{2}-10x+25=50
25 ni 25 ga qo'shish.
\left(x-5\right)^{2}=50
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{50}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=5\sqrt{2} x-5=-5\sqrt{2}
Qisqartirish.
x=5\sqrt{2}+5 x=5-5\sqrt{2}
5 ni tenglamaning ikkala tarafiga qo'shish.