Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x^{2}-2x+10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 5\times 10}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -2 ni b va 10 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 5\times 10}}{2\times 5}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4-20\times 10}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{4-200}}{2\times 5}
-20 ni 10 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{-196}}{2\times 5}
4 ni -200 ga qo'shish.
x=\frac{-\left(-2\right)±14i}{2\times 5}
-196 ning kvadrat ildizini chiqarish.
x=\frac{2±14i}{2\times 5}
-2 ning teskarisi 2 ga teng.
x=\frac{2±14i}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{2+14i}{10}
x=\frac{2±14i}{10} tenglamasini yeching, bunda ± musbat. 2 ni 14i ga qo'shish.
x=\frac{1}{5}+\frac{7}{5}i
2+14i ni 10 ga bo'lish.
x=\frac{2-14i}{10}
x=\frac{2±14i}{10} tenglamasini yeching, bunda ± manfiy. 2 dan 14i ni ayirish.
x=\frac{1}{5}-\frac{7}{5}i
2-14i ni 10 ga bo'lish.
x=\frac{1}{5}+\frac{7}{5}i x=\frac{1}{5}-\frac{7}{5}i
Tenglama yechildi.
5x^{2}-2x+10=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
5x^{2}-2x+10-10=-10
Tenglamaning ikkala tarafidan 10 ni ayirish.
5x^{2}-2x=-10
O‘zidan 10 ayirilsa 0 qoladi.
\frac{5x^{2}-2x}{5}=-\frac{10}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}-\frac{2}{5}x=-\frac{10}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{5}x=-2
-10 ni 5 ga bo'lish.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=-2+\left(-\frac{1}{5}\right)^{2}
-\frac{2}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{5} olish uchun. Keyin, -\frac{1}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-2+\frac{1}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{5} kvadratini chiqarish.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{49}{25}
-2 ni \frac{1}{25} ga qo'shish.
\left(x-\frac{1}{5}\right)^{2}=-\frac{49}{25}
x^{2}-\frac{2}{5}x+\frac{1}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{-\frac{49}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{5}=\frac{7}{5}i x-\frac{1}{5}=-\frac{7}{5}i
Qisqartirish.
x=\frac{1}{5}+\frac{7}{5}i x=\frac{1}{5}-\frac{7}{5}i
\frac{1}{5} ni tenglamaning ikkala tarafiga qo'shish.