Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x^{2}-25x-12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 5\left(-12\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -25 ni b va -12 ni c bilan almashtiring.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 5\left(-12\right)}}{2\times 5}
-25 kvadratini chiqarish.
x=\frac{-\left(-25\right)±\sqrt{625-20\left(-12\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-25\right)±\sqrt{625+240}}{2\times 5}
-20 ni -12 marotabaga ko'paytirish.
x=\frac{-\left(-25\right)±\sqrt{865}}{2\times 5}
625 ni 240 ga qo'shish.
x=\frac{25±\sqrt{865}}{2\times 5}
-25 ning teskarisi 25 ga teng.
x=\frac{25±\sqrt{865}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{\sqrt{865}+25}{10}
x=\frac{25±\sqrt{865}}{10} tenglamasini yeching, bunda ± musbat. 25 ni \sqrt{865} ga qo'shish.
x=\frac{\sqrt{865}}{10}+\frac{5}{2}
25+\sqrt{865} ni 10 ga bo'lish.
x=\frac{25-\sqrt{865}}{10}
x=\frac{25±\sqrt{865}}{10} tenglamasini yeching, bunda ± manfiy. 25 dan \sqrt{865} ni ayirish.
x=-\frac{\sqrt{865}}{10}+\frac{5}{2}
25-\sqrt{865} ni 10 ga bo'lish.
x=\frac{\sqrt{865}}{10}+\frac{5}{2} x=-\frac{\sqrt{865}}{10}+\frac{5}{2}
Tenglama yechildi.
5x^{2}-25x-12=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
5x^{2}-25x-12-\left(-12\right)=-\left(-12\right)
12 ni tenglamaning ikkala tarafiga qo'shish.
5x^{2}-25x=-\left(-12\right)
O‘zidan -12 ayirilsa 0 qoladi.
5x^{2}-25x=12
0 dan -12 ni ayirish.
\frac{5x^{2}-25x}{5}=\frac{12}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\left(-\frac{25}{5}\right)x=\frac{12}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-5x=\frac{12}{5}
-25 ni 5 ga bo'lish.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\frac{12}{5}+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=\frac{12}{5}+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=\frac{173}{20}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{12}{5} ni \frac{25}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{2}\right)^{2}=\frac{173}{20}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{173}{20}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{\sqrt{865}}{10} x-\frac{5}{2}=-\frac{\sqrt{865}}{10}
Qisqartirish.
x=\frac{\sqrt{865}}{10}+\frac{5}{2} x=-\frac{\sqrt{865}}{10}+\frac{5}{2}
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.