Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x^{2}-10x-35=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\left(-35\right)}}{2\times 5}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5\left(-35\right)}}{2\times 5}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100-20\left(-35\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{100+700}}{2\times 5}
-20 ni -35 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{800}}{2\times 5}
100 ni 700 ga qo'shish.
x=\frac{-\left(-10\right)±20\sqrt{2}}{2\times 5}
800 ning kvadrat ildizini chiqarish.
x=\frac{10±20\sqrt{2}}{2\times 5}
-10 ning teskarisi 10 ga teng.
x=\frac{10±20\sqrt{2}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{20\sqrt{2}+10}{10}
x=\frac{10±20\sqrt{2}}{10} tenglamasini yeching, bunda ± musbat. 10 ni 20\sqrt{2} ga qo'shish.
x=2\sqrt{2}+1
20\sqrt{2}+10 ni 10 ga bo'lish.
x=\frac{10-20\sqrt{2}}{10}
x=\frac{10±20\sqrt{2}}{10} tenglamasini yeching, bunda ± manfiy. 10 dan 20\sqrt{2} ni ayirish.
x=1-2\sqrt{2}
10-20\sqrt{2} ni 10 ga bo'lish.
5x^{2}-10x-35=5\left(x-\left(2\sqrt{2}+1\right)\right)\left(x-\left(1-2\sqrt{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 2\sqrt{2}+1 ga va x_{2} uchun 1-2\sqrt{2} ga bo‘ling.