Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x^{2}+7x-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-7±\sqrt{7^{2}-4\times 5\left(-2\right)}}{2\times 5}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{49-4\times 5\left(-2\right)}}{2\times 5}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-20\left(-2\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49+40}}{2\times 5}
-20 ni -2 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{89}}{2\times 5}
49 ni 40 ga qo'shish.
x=\frac{-7±\sqrt{89}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{\sqrt{89}-7}{10}
x=\frac{-7±\sqrt{89}}{10} tenglamasini yeching, bunda ± musbat. -7 ni \sqrt{89} ga qo'shish.
x=\frac{-\sqrt{89}-7}{10}
x=\frac{-7±\sqrt{89}}{10} tenglamasini yeching, bunda ± manfiy. -7 dan \sqrt{89} ni ayirish.
5x^{2}+7x-2=5\left(x-\frac{\sqrt{89}-7}{10}\right)\left(x-\frac{-\sqrt{89}-7}{10}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-7+\sqrt{89}}{10} ga va x_{2} uchun \frac{-7-\sqrt{89}}{10} ga bo‘ling.