Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x^{2}+5x+9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-5±\sqrt{5^{2}-4\times 5\times 9}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 5 ni b va 9 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 5\times 9}}{2\times 5}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-20\times 9}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25-180}}{2\times 5}
-20 ni 9 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{-155}}{2\times 5}
25 ni -180 ga qo'shish.
x=\frac{-5±\sqrt{155}i}{2\times 5}
-155 ning kvadrat ildizini chiqarish.
x=\frac{-5±\sqrt{155}i}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{-5+\sqrt{155}i}{10}
x=\frac{-5±\sqrt{155}i}{10} tenglamasini yeching, bunda ± musbat. -5 ni i\sqrt{155} ga qo'shish.
x=\frac{\sqrt{155}i}{10}-\frac{1}{2}
-5+i\sqrt{155} ni 10 ga bo'lish.
x=\frac{-\sqrt{155}i-5}{10}
x=\frac{-5±\sqrt{155}i}{10} tenglamasini yeching, bunda ± manfiy. -5 dan i\sqrt{155} ni ayirish.
x=-\frac{\sqrt{155}i}{10}-\frac{1}{2}
-5-i\sqrt{155} ni 10 ga bo'lish.
x=\frac{\sqrt{155}i}{10}-\frac{1}{2} x=-\frac{\sqrt{155}i}{10}-\frac{1}{2}
Tenglama yechildi.
5x^{2}+5x+9=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
5x^{2}+5x+9-9=-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
5x^{2}+5x=-9
O‘zidan 9 ayirilsa 0 qoladi.
\frac{5x^{2}+5x}{5}=-\frac{9}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{5}{5}x=-\frac{9}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+x=-\frac{9}{5}
5 ni 5 ga bo'lish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{9}{5}+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=-\frac{9}{5}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=-\frac{31}{20}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{9}{5} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{2}\right)^{2}=-\frac{31}{20}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{31}{20}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{155}i}{10} x+\frac{1}{2}=-\frac{\sqrt{155}i}{10}
Qisqartirish.
x=\frac{\sqrt{155}i}{10}-\frac{1}{2} x=-\frac{\sqrt{155}i}{10}-\frac{1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.