Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x^{2}+1-10x=0
Ikkala tarafdan 10x ni ayirish.
5x^{2}-10x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -10 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5}}{2\times 5}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100-20}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{80}}{2\times 5}
100 ni -20 ga qo'shish.
x=\frac{-\left(-10\right)±4\sqrt{5}}{2\times 5}
80 ning kvadrat ildizini chiqarish.
x=\frac{10±4\sqrt{5}}{2\times 5}
-10 ning teskarisi 10 ga teng.
x=\frac{10±4\sqrt{5}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{4\sqrt{5}+10}{10}
x=\frac{10±4\sqrt{5}}{10} tenglamasini yeching, bunda ± musbat. 10 ni 4\sqrt{5} ga qo'shish.
x=\frac{2\sqrt{5}}{5}+1
10+4\sqrt{5} ni 10 ga bo'lish.
x=\frac{10-4\sqrt{5}}{10}
x=\frac{10±4\sqrt{5}}{10} tenglamasini yeching, bunda ± manfiy. 10 dan 4\sqrt{5} ni ayirish.
x=-\frac{2\sqrt{5}}{5}+1
10-4\sqrt{5} ni 10 ga bo'lish.
x=\frac{2\sqrt{5}}{5}+1 x=-\frac{2\sqrt{5}}{5}+1
Tenglama yechildi.
5x^{2}+1-10x=0
Ikkala tarafdan 10x ni ayirish.
5x^{2}-10x=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{5x^{2}-10x}{5}=-\frac{1}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\left(-\frac{10}{5}\right)x=-\frac{1}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-2x=-\frac{1}{5}
-10 ni 5 ga bo'lish.
x^{2}-2x+1=-\frac{1}{5}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=\frac{4}{5}
-\frac{1}{5} ni 1 ga qo'shish.
\left(x-1\right)^{2}=\frac{4}{5}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{4}{5}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{2\sqrt{5}}{5} x-1=-\frac{2\sqrt{5}}{5}
Qisqartirish.
x=\frac{2\sqrt{5}}{5}+1 x=-\frac{2\sqrt{5}}{5}+1
1 ni tenglamaning ikkala tarafiga qo'shish.