x uchun yechish
x=\frac{2\sqrt{5}}{5}+1\approx 1,894427191
x=-\frac{2\sqrt{5}}{5}+1\approx 0,105572809
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x^{2}+1-10x=0
Ikkala tarafdan 10x ni ayirish.
5x^{2}-10x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -10 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5}}{2\times 5}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100-20}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{80}}{2\times 5}
100 ni -20 ga qo'shish.
x=\frac{-\left(-10\right)±4\sqrt{5}}{2\times 5}
80 ning kvadrat ildizini chiqarish.
x=\frac{10±4\sqrt{5}}{2\times 5}
-10 ning teskarisi 10 ga teng.
x=\frac{10±4\sqrt{5}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{4\sqrt{5}+10}{10}
x=\frac{10±4\sqrt{5}}{10} tenglamasini yeching, bunda ± musbat. 10 ni 4\sqrt{5} ga qo'shish.
x=\frac{2\sqrt{5}}{5}+1
10+4\sqrt{5} ni 10 ga bo'lish.
x=\frac{10-4\sqrt{5}}{10}
x=\frac{10±4\sqrt{5}}{10} tenglamasini yeching, bunda ± manfiy. 10 dan 4\sqrt{5} ni ayirish.
x=-\frac{2\sqrt{5}}{5}+1
10-4\sqrt{5} ni 10 ga bo'lish.
x=\frac{2\sqrt{5}}{5}+1 x=-\frac{2\sqrt{5}}{5}+1
Tenglama yechildi.
5x^{2}+1-10x=0
Ikkala tarafdan 10x ni ayirish.
5x^{2}-10x=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{5x^{2}-10x}{5}=-\frac{1}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\left(-\frac{10}{5}\right)x=-\frac{1}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-2x=-\frac{1}{5}
-10 ni 5 ga bo'lish.
x^{2}-2x+1=-\frac{1}{5}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=\frac{4}{5}
-\frac{1}{5} ni 1 ga qo'shish.
\left(x-1\right)^{2}=\frac{4}{5}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{4}{5}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{2\sqrt{5}}{5} x-1=-\frac{2\sqrt{5}}{5}
Qisqartirish.
x=\frac{2\sqrt{5}}{5}+1 x=-\frac{2\sqrt{5}}{5}+1
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}