Baholash
\frac{8936}{15}\approx 595,733333333
Omil
\frac{2 ^ {3} \cdot 1117}{3 \cdot 5} = 595\frac{11}{15} = 595,7333333333333
Baham ko'rish
Klipbordga nusxa olish
\frac{15+1}{3}-\frac{40\times 3+1}{3}+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
15 hosil qilish uchun 5 va 3 ni ko'paytirish.
\frac{16}{3}-\frac{40\times 3+1}{3}+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
16 olish uchun 15 va 1'ni qo'shing.
\frac{16}{3}-\frac{120+1}{3}+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
120 hosil qilish uchun 40 va 3 ni ko'paytirish.
\frac{16}{3}-\frac{121}{3}+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
121 olish uchun 120 va 1'ni qo'shing.
\frac{16-121}{3}+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
\frac{16}{3} va \frac{121}{3} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{-105}{3}+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
-105 olish uchun 16 dan 121 ni ayirish.
-35+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
-35 ni olish uchun -105 ni 3 ga bo‘ling.
-35+\frac{1875+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
1875 hosil qilish uchun 625 va 3 ni ko'paytirish.
-35+\frac{1876}{3}+15\times \frac{27}{25}\times \frac{1}{3}
1876 olish uchun 1875 va 1'ni qo'shing.
-\frac{105}{3}+\frac{1876}{3}+15\times \frac{27}{25}\times \frac{1}{3}
-35 ni -\frac{105}{3} kasrga o‘giring.
\frac{-105+1876}{3}+15\times \frac{27}{25}\times \frac{1}{3}
-\frac{105}{3} va \frac{1876}{3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{1771}{3}+15\times \frac{27}{25}\times \frac{1}{3}
1771 olish uchun -105 va 1876'ni qo'shing.
\frac{1771}{3}+\frac{15\times 27}{25}\times \frac{1}{3}
15\times \frac{27}{25} ni yagona kasrga aylantiring.
\frac{1771}{3}+\frac{405}{25}\times \frac{1}{3}
405 hosil qilish uchun 15 va 27 ni ko'paytirish.
\frac{1771}{3}+\frac{81}{5}\times \frac{1}{3}
\frac{405}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1771}{3}+\frac{81\times 1}{5\times 3}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{81}{5} ni \frac{1}{3} ga ko‘paytiring.
\frac{1771}{3}+\frac{81}{15}
\frac{81\times 1}{5\times 3} kasridagi ko‘paytirishlarni bajaring.
\frac{1771}{3}+\frac{27}{5}
\frac{81}{15} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{8855}{15}+\frac{81}{15}
3 va 5 ning eng kichik umumiy karralisi 15 ga teng. \frac{1771}{3} va \frac{27}{5} ni 15 maxraj bilan kasrlarga aylantirib oling.
\frac{8855+81}{15}
\frac{8855}{15} va \frac{81}{15} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{8936}{15}
8936 olish uchun 8855 va 81'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}