Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5^{x}=\frac{1}{125}
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
\log(5^{x})=\log(\frac{1}{125})
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
x\log(5)=\log(\frac{1}{125})
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
x=\frac{\log(\frac{1}{125})}{\log(5)}
Ikki tarafini \log(5) ga bo‘ling.
x=\log_{5}\left(\frac{1}{125}\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).