Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5^{x+2}=125
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
\log(5^{x+2})=\log(125)
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
\left(x+2\right)\log(5)=\log(125)
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
x+2=\frac{\log(125)}{\log(5)}
Ikki tarafini \log(5) ga bo‘ling.
x+2=\log_{5}\left(125\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=3-2
Tenglamaning ikkala tarafidan 2 ni ayirish.