Tasdiqlamoq
yolgʻon
Baham ko'rish
Klipbordga nusxa olish
\frac{50}{10}=\frac{1}{10}\text{ and }\frac{1}{10}=\frac{1}{15}-20
5 ni \frac{50}{10} kasrga o‘giring.
\text{false}\text{ and }\frac{1}{10}=\frac{1}{15}-20
\frac{50}{10} va \frac{1}{10} ni taqqoslang.
\text{false}\text{ and }\frac{1}{10}=\frac{1}{15}-\frac{300}{15}
20 ni \frac{300}{15} kasrga o‘giring.
\text{false}\text{ and }\frac{1}{10}=\frac{1-300}{15}
\frac{1}{15} va \frac{300}{15} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\text{false}\text{ and }\frac{1}{10}=-\frac{299}{15}
-299 olish uchun 1 dan 300 ni ayirish.
\text{false}\text{ and }\frac{3}{30}=-\frac{598}{30}
10 va 15 ning eng kichik umumiy karralisi 30 ga teng. \frac{1}{10} va -\frac{299}{15} ni 30 maxraj bilan kasrlarga aylantirib oling.
\text{false}\text{ and }\text{false}
\frac{3}{30} va -\frac{598}{30} ni taqqoslang.
\text{false}
\text{false} va \text{false} birlashmasi \text{false} ga teng.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}