Tasdiqlamoq
yolgʻon
Baham ko'rish
Klipbordga nusxa olish
11=\frac{1-\left(\sin(45)\right)^{2}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
11 olish uchun 5 va 6'ni qo'shing.
11=\frac{1-\left(\frac{\sqrt{2}}{2}\right)^{2}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
Trigonometrik qiymatlar jadvaldan \sin(45) qiymatini oling.
11=\frac{1-\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
\frac{\sqrt{2}}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
11=\frac{1-\frac{2}{2^{2}}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
\sqrt{2} kvadrati – 2.
11=\frac{1-\frac{2}{4}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
11=\frac{1-\frac{1}{2}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
11=\frac{\frac{1}{2}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
\frac{1}{2} olish uchun 1 dan \frac{1}{2} ni ayirish.
11=\frac{\frac{1}{2}}{1+\left(\frac{\sqrt{2}}{2}\right)^{2}}+\left(\tan(45)\right)^{2}
Trigonometrik qiymatlar jadvaldan \sin(45) qiymatini oling.
11=\frac{\frac{1}{2}}{1+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}+\left(\tan(45)\right)^{2}
\frac{\sqrt{2}}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
11=\frac{\frac{1}{2}}{\frac{2^{2}}{2^{2}}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}+\left(\tan(45)\right)^{2}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{2^{2}}{2^{2}} marotabaga ko'paytirish.
11=\frac{\frac{1}{2}}{\frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}}+\left(\tan(45)\right)^{2}
\frac{2^{2}}{2^{2}} va \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
11=\frac{2^{2}}{2\left(2^{2}+\left(\sqrt{2}\right)^{2}\right)}+\left(\tan(45)\right)^{2}
\frac{1}{2} ni \frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}} ga bo'lish \frac{1}{2} ga k'paytirish \frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}} ga qaytarish.
11=\frac{2}{\left(\sqrt{2}\right)^{2}+2^{2}}+\left(\tan(45)\right)^{2}
Surat va maxrajdagi ikkala 2 ni qisqartiring.
11=\frac{2}{2+2^{2}}+\left(\tan(45)\right)^{2}
\sqrt{2} kvadrati – 2.
11=\frac{2}{2+4}+\left(\tan(45)\right)^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
11=\frac{2}{6}+\left(\tan(45)\right)^{2}
6 olish uchun 2 va 4'ni qo'shing.
11=\frac{1}{3}+\left(\tan(45)\right)^{2}
\frac{2}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
11=\frac{1}{3}+1^{2}
Trigonometrik qiymatlar jadvaldan \tan(45) qiymatini oling.
11=\frac{1}{3}+1
2 daraja ko‘rsatkichini 1 ga hisoblang va 1 ni qiymatni oling.
11=\frac{4}{3}
\frac{4}{3} olish uchun \frac{1}{3} va 1'ni qo'shing.
\frac{33}{3}=\frac{4}{3}
11 ni \frac{33}{3} kasrga o‘giring.
\text{false}
\frac{33}{3} va \frac{4}{3} ni taqqoslang.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}