a uchun yechish
a = \frac{11}{7} = 1\frac{4}{7} \approx 1,571428571
Baham ko'rish
Klipbordga nusxa olish
5+3a+12=7a-\left(9-10a\right)+4
3 ga a+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
17+3a=7a-\left(9-10a\right)+4
17 olish uchun 5 va 12'ni qo'shing.
17+3a=7a-9-\left(-10a\right)+4
9-10a teskarisini topish uchun har birining teskarisini toping.
17+3a=7a-9+10a+4
-10a ning teskarisi 10a ga teng.
17+3a=17a-9+4
17a ni olish uchun 7a va 10a ni birlashtirish.
17+3a=17a-5
-5 olish uchun -9 va 4'ni qo'shing.
17+3a-17a=-5
Ikkala tarafdan 17a ni ayirish.
17-14a=-5
-14a ni olish uchun 3a va -17a ni birlashtirish.
-14a=-5-17
Ikkala tarafdan 17 ni ayirish.
-14a=-22
-22 olish uchun -5 dan 17 ni ayirish.
a=\frac{-22}{-14}
Ikki tarafini -14 ga bo‘ling.
a=\frac{11}{7}
\frac{-22}{-14} ulushini -2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}