Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}+4x=15
4x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+4x-15=0
Ikkala tarafdan 15 ni ayirish.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-15\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 4 ni b va -15 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\times 4\left(-15\right)}}{2\times 4}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16-16\left(-15\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16+240}}{2\times 4}
-16 ni -15 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{256}}{2\times 4}
16 ni 240 ga qo'shish.
x=\frac{-4±16}{2\times 4}
256 ning kvadrat ildizini chiqarish.
x=\frac{-4±16}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{12}{8}
x=\frac{-4±16}{8} tenglamasini yeching, bunda ± musbat. -4 ni 16 ga qo'shish.
x=\frac{3}{2}
\frac{12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{20}{8}
x=\frac{-4±16}{8} tenglamasini yeching, bunda ± manfiy. -4 dan 16 ni ayirish.
x=-\frac{5}{2}
\frac{-20}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{3}{2} x=-\frac{5}{2}
Tenglama yechildi.
4x^{2}+4x=15
4x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{4x^{2}+4x}{4}=\frac{15}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{4}{4}x=\frac{15}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+x=\frac{15}{4}
4 ni 4 ga bo'lish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{15}{4}+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=\frac{15+1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=4
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{15}{4} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{2}\right)^{2}=4
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=2 x+\frac{1}{2}=-2
Qisqartirish.
x=\frac{3}{2} x=-\frac{5}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.