Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}=225
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}=\frac{225}{4}
Ikki tarafini 4 ga bo‘ling.
x=\frac{15}{2} x=-\frac{15}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
4x^{2}=225
x^{2} hosil qilish uchun x va x ni ko'paytirish.
4x^{2}-225=0
Ikkala tarafdan 225 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-225\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 0 ni b va -225 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 4\left(-225\right)}}{2\times 4}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-16\left(-225\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{0±\sqrt{3600}}{2\times 4}
-16 ni -225 marotabaga ko'paytirish.
x=\frac{0±60}{2\times 4}
3600 ning kvadrat ildizini chiqarish.
x=\frac{0±60}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{15}{2}
x=\frac{0±60}{8} tenglamasini yeching, bunda ± musbat. \frac{60}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{15}{2}
x=\frac{0±60}{8} tenglamasini yeching, bunda ± manfiy. \frac{-60}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{15}{2} x=-\frac{15}{2}
Tenglama yechildi.