Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}\times 2+3x=72
x^{2} hosil qilish uchun x va x ni ko'paytirish.
8x^{2}+3x=72
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
8x^{2}+3x-72=0
Ikkala tarafdan 72 ni ayirish.
x=\frac{-3±\sqrt{3^{2}-4\times 8\left(-72\right)}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, 3 ni b va -72 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\times 8\left(-72\right)}}{2\times 8}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-32\left(-72\right)}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+2304}}{2\times 8}
-32 ni -72 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{2313}}{2\times 8}
9 ni 2304 ga qo'shish.
x=\frac{-3±3\sqrt{257}}{2\times 8}
2313 ning kvadrat ildizini chiqarish.
x=\frac{-3±3\sqrt{257}}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{3\sqrt{257}-3}{16}
x=\frac{-3±3\sqrt{257}}{16} tenglamasini yeching, bunda ± musbat. -3 ni 3\sqrt{257} ga qo'shish.
x=\frac{-3\sqrt{257}-3}{16}
x=\frac{-3±3\sqrt{257}}{16} tenglamasini yeching, bunda ± manfiy. -3 dan 3\sqrt{257} ni ayirish.
x=\frac{3\sqrt{257}-3}{16} x=\frac{-3\sqrt{257}-3}{16}
Tenglama yechildi.
4x^{2}\times 2+3x=72
x^{2} hosil qilish uchun x va x ni ko'paytirish.
8x^{2}+3x=72
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
\frac{8x^{2}+3x}{8}=\frac{72}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}+\frac{3}{8}x=\frac{72}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{8}x=9
72 ni 8 ga bo'lish.
x^{2}+\frac{3}{8}x+\left(\frac{3}{16}\right)^{2}=9+\left(\frac{3}{16}\right)^{2}
\frac{3}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{16} olish uchun. Keyin, \frac{3}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{8}x+\frac{9}{256}=9+\frac{9}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{16} kvadratini chiqarish.
x^{2}+\frac{3}{8}x+\frac{9}{256}=\frac{2313}{256}
9 ni \frac{9}{256} ga qo'shish.
\left(x+\frac{3}{16}\right)^{2}=\frac{2313}{256}
x^{2}+\frac{3}{8}x+\frac{9}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{16}\right)^{2}}=\sqrt{\frac{2313}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{16}=\frac{3\sqrt{257}}{16} x+\frac{3}{16}=-\frac{3\sqrt{257}}{16}
Qisqartirish.
x=\frac{3\sqrt{257}-3}{16} x=\frac{-3\sqrt{257}-3}{16}
Tenglamaning ikkala tarafidan \frac{3}{16} ni ayirish.