x uchun yechish
x = \frac{3 \sqrt{257} - 3}{16} \approx 2,818353664
x=\frac{-3\sqrt{257}-3}{16}\approx -3,193353664
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x^{2}\times 2+3x=72
x^{2} hosil qilish uchun x va x ni ko'paytirish.
8x^{2}+3x=72
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
8x^{2}+3x-72=0
Ikkala tarafdan 72 ni ayirish.
x=\frac{-3±\sqrt{3^{2}-4\times 8\left(-72\right)}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, 3 ni b va -72 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\times 8\left(-72\right)}}{2\times 8}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-32\left(-72\right)}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+2304}}{2\times 8}
-32 ni -72 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{2313}}{2\times 8}
9 ni 2304 ga qo'shish.
x=\frac{-3±3\sqrt{257}}{2\times 8}
2313 ning kvadrat ildizini chiqarish.
x=\frac{-3±3\sqrt{257}}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{3\sqrt{257}-3}{16}
x=\frac{-3±3\sqrt{257}}{16} tenglamasini yeching, bunda ± musbat. -3 ni 3\sqrt{257} ga qo'shish.
x=\frac{-3\sqrt{257}-3}{16}
x=\frac{-3±3\sqrt{257}}{16} tenglamasini yeching, bunda ± manfiy. -3 dan 3\sqrt{257} ni ayirish.
x=\frac{3\sqrt{257}-3}{16} x=\frac{-3\sqrt{257}-3}{16}
Tenglama yechildi.
4x^{2}\times 2+3x=72
x^{2} hosil qilish uchun x va x ni ko'paytirish.
8x^{2}+3x=72
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
\frac{8x^{2}+3x}{8}=\frac{72}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}+\frac{3}{8}x=\frac{72}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{8}x=9
72 ni 8 ga bo'lish.
x^{2}+\frac{3}{8}x+\left(\frac{3}{16}\right)^{2}=9+\left(\frac{3}{16}\right)^{2}
\frac{3}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{16} olish uchun. Keyin, \frac{3}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{8}x+\frac{9}{256}=9+\frac{9}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{16} kvadratini chiqarish.
x^{2}+\frac{3}{8}x+\frac{9}{256}=\frac{2313}{256}
9 ni \frac{9}{256} ga qo'shish.
\left(x+\frac{3}{16}\right)^{2}=\frac{2313}{256}
x^{2}+\frac{3}{8}x+\frac{9}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{16}\right)^{2}}=\sqrt{\frac{2313}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{16}=\frac{3\sqrt{257}}{16} x+\frac{3}{16}=-\frac{3\sqrt{257}}{16}
Qisqartirish.
x=\frac{3\sqrt{257}-3}{16} x=\frac{-3\sqrt{257}-3}{16}
Tenglamaning ikkala tarafidan \frac{3}{16} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}