x, y uchun yechish
x=7
y=3
Grafik
Baham ko'rish
Klipbordga nusxa olish
49x-57y=172,57x-49y=252
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
49x-57y=172
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
49x=57y+172
57y ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{1}{49}\left(57y+172\right)
Ikki tarafini 49 ga bo‘ling.
x=\frac{57}{49}y+\frac{172}{49}
\frac{1}{49} ni 57y+172 marotabaga ko'paytirish.
57\left(\frac{57}{49}y+\frac{172}{49}\right)-49y=252
\frac{57y+172}{49} ni x uchun boshqa tenglamada almashtirish, 57x-49y=252.
\frac{3249}{49}y+\frac{9804}{49}-49y=252
57 ni \frac{57y+172}{49} marotabaga ko'paytirish.
\frac{848}{49}y+\frac{9804}{49}=252
\frac{3249y}{49} ni -49y ga qo'shish.
\frac{848}{49}y=\frac{2544}{49}
Tenglamaning ikkala tarafidan \frac{9804}{49} ni ayirish.
y=3
Tenglamaning ikki tarafini \frac{848}{49} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{57}{49}\times 3+\frac{172}{49}
3 ni y uchun x=\frac{57}{49}y+\frac{172}{49} da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=\frac{171+172}{49}
\frac{57}{49} ni 3 marotabaga ko'paytirish.
x=7
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{172}{49} ni \frac{171}{49} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=7,y=3
Tizim hal qilindi.
49x-57y=172,57x-49y=252
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}49&-57\\57&-49\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}172\\252\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}49&-57\\57&-49\end{matrix}\right))\left(\begin{matrix}49&-57\\57&-49\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}49&-57\\57&-49\end{matrix}\right))\left(\begin{matrix}172\\252\end{matrix}\right)
\left(\begin{matrix}49&-57\\57&-49\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}49&-57\\57&-49\end{matrix}\right))\left(\begin{matrix}172\\252\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}49&-57\\57&-49\end{matrix}\right))\left(\begin{matrix}172\\252\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{49}{49\left(-49\right)-\left(-57\times 57\right)}&-\frac{-57}{49\left(-49\right)-\left(-57\times 57\right)}\\-\frac{57}{49\left(-49\right)-\left(-57\times 57\right)}&\frac{49}{49\left(-49\right)-\left(-57\times 57\right)}\end{matrix}\right)\left(\begin{matrix}172\\252\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{49}{848}&\frac{57}{848}\\-\frac{57}{848}&\frac{49}{848}\end{matrix}\right)\left(\begin{matrix}172\\252\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{49}{848}\times 172+\frac{57}{848}\times 252\\-\frac{57}{848}\times 172+\frac{49}{848}\times 252\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\3\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=7,y=3
x va y matritsa elementlarini chiqarib olish.
49x-57y=172,57x-49y=252
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
57\times 49x+57\left(-57\right)y=57\times 172,49\times 57x+49\left(-49\right)y=49\times 252
49x va 57x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 57 ga va ikkinchining har bir tarafidagi barcha shartlarni 49 ga ko'paytiring.
2793x-3249y=9804,2793x-2401y=12348
Qisqartirish.
2793x-2793x-3249y+2401y=9804-12348
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 2793x-3249y=9804 dan 2793x-2401y=12348 ni ayirish.
-3249y+2401y=9804-12348
2793x ni -2793x ga qo'shish. 2793x va -2793x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-848y=9804-12348
-3249y ni 2401y ga qo'shish.
-848y=-2544
9804 ni -12348 ga qo'shish.
y=3
Ikki tarafini -848 ga bo‘ling.
57x-49\times 3=252
3 ni y uchun 57x-49y=252 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
57x-147=252
-49 ni 3 marotabaga ko'paytirish.
57x=399
147 ni tenglamaning ikkala tarafiga qo'shish.
x=7
Ikki tarafini 57 ga bo‘ling.
x=7,y=3
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}