Asosiy tarkibga oʻtish
b uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(7b-3\right)\left(7b+3\right)=0
Hisoblang: 49b^{2}-9. 49b^{2}-9 ni \left(7b\right)^{2}-3^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
b=\frac{3}{7} b=-\frac{3}{7}
Tenglamani yechish uchun 7b-3=0 va 7b+3=0 ni yeching.
49b^{2}=9
9 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
b^{2}=\frac{9}{49}
Ikki tarafini 49 ga bo‘ling.
b=\frac{3}{7} b=-\frac{3}{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
49b^{2}-9=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\times 49\left(-9\right)}}{2\times 49}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 49 ni a, 0 ni b va -9 ni c bilan almashtiring.
b=\frac{0±\sqrt{-4\times 49\left(-9\right)}}{2\times 49}
0 kvadratini chiqarish.
b=\frac{0±\sqrt{-196\left(-9\right)}}{2\times 49}
-4 ni 49 marotabaga ko'paytirish.
b=\frac{0±\sqrt{1764}}{2\times 49}
-196 ni -9 marotabaga ko'paytirish.
b=\frac{0±42}{2\times 49}
1764 ning kvadrat ildizini chiqarish.
b=\frac{0±42}{98}
2 ni 49 marotabaga ko'paytirish.
b=\frac{3}{7}
b=\frac{0±42}{98} tenglamasini yeching, bunda ± musbat. \frac{42}{98} ulushini 14 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
b=-\frac{3}{7}
b=\frac{0±42}{98} tenglamasini yeching, bunda ± manfiy. \frac{-42}{98} ulushini 14 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
b=\frac{3}{7} b=-\frac{3}{7}
Tenglama yechildi.