Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

49x^{2}-200x-500=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\times 49\left(-500\right)}}{2\times 49}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 49 ni a, -200 ni b va -500 ni c bilan almashtiring.
x=\frac{-\left(-200\right)±\sqrt{40000-4\times 49\left(-500\right)}}{2\times 49}
-200 kvadratini chiqarish.
x=\frac{-\left(-200\right)±\sqrt{40000-196\left(-500\right)}}{2\times 49}
-4 ni 49 marotabaga ko'paytirish.
x=\frac{-\left(-200\right)±\sqrt{40000+98000}}{2\times 49}
-196 ni -500 marotabaga ko'paytirish.
x=\frac{-\left(-200\right)±\sqrt{138000}}{2\times 49}
40000 ni 98000 ga qo'shish.
x=\frac{-\left(-200\right)±20\sqrt{345}}{2\times 49}
138000 ning kvadrat ildizini chiqarish.
x=\frac{200±20\sqrt{345}}{2\times 49}
-200 ning teskarisi 200 ga teng.
x=\frac{200±20\sqrt{345}}{98}
2 ni 49 marotabaga ko'paytirish.
x=\frac{20\sqrt{345}+200}{98}
x=\frac{200±20\sqrt{345}}{98} tenglamasini yeching, bunda ± musbat. 200 ni 20\sqrt{345} ga qo'shish.
x=\frac{10\sqrt{345}+100}{49}
200+20\sqrt{345} ni 98 ga bo'lish.
x=\frac{200-20\sqrt{345}}{98}
x=\frac{200±20\sqrt{345}}{98} tenglamasini yeching, bunda ± manfiy. 200 dan 20\sqrt{345} ni ayirish.
x=\frac{100-10\sqrt{345}}{49}
200-20\sqrt{345} ni 98 ga bo'lish.
x=\frac{10\sqrt{345}+100}{49} x=\frac{100-10\sqrt{345}}{49}
Tenglama yechildi.
49x^{2}-200x-500=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
49x^{2}-200x-500-\left(-500\right)=-\left(-500\right)
500 ni tenglamaning ikkala tarafiga qo'shish.
49x^{2}-200x=-\left(-500\right)
O‘zidan -500 ayirilsa 0 qoladi.
49x^{2}-200x=500
0 dan -500 ni ayirish.
\frac{49x^{2}-200x}{49}=\frac{500}{49}
Ikki tarafini 49 ga bo‘ling.
x^{2}-\frac{200}{49}x=\frac{500}{49}
49 ga bo'lish 49 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{200}{49}x+\left(-\frac{100}{49}\right)^{2}=\frac{500}{49}+\left(-\frac{100}{49}\right)^{2}
-\frac{200}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{100}{49} olish uchun. Keyin, -\frac{100}{49} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{200}{49}x+\frac{10000}{2401}=\frac{500}{49}+\frac{10000}{2401}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{100}{49} kvadratini chiqarish.
x^{2}-\frac{200}{49}x+\frac{10000}{2401}=\frac{34500}{2401}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{500}{49} ni \frac{10000}{2401} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{100}{49}\right)^{2}=\frac{34500}{2401}
x^{2}-\frac{200}{49}x+\frac{10000}{2401} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{100}{49}\right)^{2}}=\sqrt{\frac{34500}{2401}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{100}{49}=\frac{10\sqrt{345}}{49} x-\frac{100}{49}=-\frac{10\sqrt{345}}{49}
Qisqartirish.
x=\frac{10\sqrt{345}+100}{49} x=\frac{100-10\sqrt{345}}{49}
\frac{100}{49} ni tenglamaning ikkala tarafiga qo'shish.