x uchun yechish
x = \frac{10 \sqrt{345} + 100}{49} \approx 5,831464412
x=\frac{100-10\sqrt{345}}{49}\approx -1,749831759
Grafik
Baham ko'rish
Klipbordga nusxa olish
49x^{2}-200x-500=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\times 49\left(-500\right)}}{2\times 49}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 49 ni a, -200 ni b va -500 ni c bilan almashtiring.
x=\frac{-\left(-200\right)±\sqrt{40000-4\times 49\left(-500\right)}}{2\times 49}
-200 kvadratini chiqarish.
x=\frac{-\left(-200\right)±\sqrt{40000-196\left(-500\right)}}{2\times 49}
-4 ni 49 marotabaga ko'paytirish.
x=\frac{-\left(-200\right)±\sqrt{40000+98000}}{2\times 49}
-196 ni -500 marotabaga ko'paytirish.
x=\frac{-\left(-200\right)±\sqrt{138000}}{2\times 49}
40000 ni 98000 ga qo'shish.
x=\frac{-\left(-200\right)±20\sqrt{345}}{2\times 49}
138000 ning kvadrat ildizini chiqarish.
x=\frac{200±20\sqrt{345}}{2\times 49}
-200 ning teskarisi 200 ga teng.
x=\frac{200±20\sqrt{345}}{98}
2 ni 49 marotabaga ko'paytirish.
x=\frac{20\sqrt{345}+200}{98}
x=\frac{200±20\sqrt{345}}{98} tenglamasini yeching, bunda ± musbat. 200 ni 20\sqrt{345} ga qo'shish.
x=\frac{10\sqrt{345}+100}{49}
200+20\sqrt{345} ni 98 ga bo'lish.
x=\frac{200-20\sqrt{345}}{98}
x=\frac{200±20\sqrt{345}}{98} tenglamasini yeching, bunda ± manfiy. 200 dan 20\sqrt{345} ni ayirish.
x=\frac{100-10\sqrt{345}}{49}
200-20\sqrt{345} ni 98 ga bo'lish.
x=\frac{10\sqrt{345}+100}{49} x=\frac{100-10\sqrt{345}}{49}
Tenglama yechildi.
49x^{2}-200x-500=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
49x^{2}-200x-500-\left(-500\right)=-\left(-500\right)
500 ni tenglamaning ikkala tarafiga qo'shish.
49x^{2}-200x=-\left(-500\right)
O‘zidan -500 ayirilsa 0 qoladi.
49x^{2}-200x=500
0 dan -500 ni ayirish.
\frac{49x^{2}-200x}{49}=\frac{500}{49}
Ikki tarafini 49 ga bo‘ling.
x^{2}-\frac{200}{49}x=\frac{500}{49}
49 ga bo'lish 49 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{200}{49}x+\left(-\frac{100}{49}\right)^{2}=\frac{500}{49}+\left(-\frac{100}{49}\right)^{2}
-\frac{200}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{100}{49} olish uchun. Keyin, -\frac{100}{49} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{200}{49}x+\frac{10000}{2401}=\frac{500}{49}+\frac{10000}{2401}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{100}{49} kvadratini chiqarish.
x^{2}-\frac{200}{49}x+\frac{10000}{2401}=\frac{34500}{2401}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{500}{49} ni \frac{10000}{2401} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{100}{49}\right)^{2}=\frac{34500}{2401}
x^{2}-\frac{200}{49}x+\frac{10000}{2401} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{100}{49}\right)^{2}}=\sqrt{\frac{34500}{2401}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{100}{49}=\frac{10\sqrt{345}}{49} x-\frac{100}{49}=-\frac{10\sqrt{345}}{49}
Qisqartirish.
x=\frac{10\sqrt{345}+100}{49} x=\frac{100-10\sqrt{345}}{49}
\frac{100}{49} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}