Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

48x^{2}-52x-26=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\times 48\left(-26\right)}}{2\times 48}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 48 ni a, -52 ni b va -26 ni c bilan almashtiring.
x=\frac{-\left(-52\right)±\sqrt{2704-4\times 48\left(-26\right)}}{2\times 48}
-52 kvadratini chiqarish.
x=\frac{-\left(-52\right)±\sqrt{2704-192\left(-26\right)}}{2\times 48}
-4 ni 48 marotabaga ko'paytirish.
x=\frac{-\left(-52\right)±\sqrt{2704+4992}}{2\times 48}
-192 ni -26 marotabaga ko'paytirish.
x=\frac{-\left(-52\right)±\sqrt{7696}}{2\times 48}
2704 ni 4992 ga qo'shish.
x=\frac{-\left(-52\right)±4\sqrt{481}}{2\times 48}
7696 ning kvadrat ildizini chiqarish.
x=\frac{52±4\sqrt{481}}{2\times 48}
-52 ning teskarisi 52 ga teng.
x=\frac{52±4\sqrt{481}}{96}
2 ni 48 marotabaga ko'paytirish.
x=\frac{4\sqrt{481}+52}{96}
x=\frac{52±4\sqrt{481}}{96} tenglamasini yeching, bunda ± musbat. 52 ni 4\sqrt{481} ga qo'shish.
x=\frac{\sqrt{481}+13}{24}
52+4\sqrt{481} ni 96 ga bo'lish.
x=\frac{52-4\sqrt{481}}{96}
x=\frac{52±4\sqrt{481}}{96} tenglamasini yeching, bunda ± manfiy. 52 dan 4\sqrt{481} ni ayirish.
x=\frac{13-\sqrt{481}}{24}
52-4\sqrt{481} ni 96 ga bo'lish.
x=\frac{\sqrt{481}+13}{24} x=\frac{13-\sqrt{481}}{24}
Tenglama yechildi.
48x^{2}-52x-26=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
48x^{2}-52x-26-\left(-26\right)=-\left(-26\right)
26 ni tenglamaning ikkala tarafiga qo'shish.
48x^{2}-52x=-\left(-26\right)
O‘zidan -26 ayirilsa 0 qoladi.
48x^{2}-52x=26
0 dan -26 ni ayirish.
\frac{48x^{2}-52x}{48}=\frac{26}{48}
Ikki tarafini 48 ga bo‘ling.
x^{2}+\left(-\frac{52}{48}\right)x=\frac{26}{48}
48 ga bo'lish 48 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{13}{12}x=\frac{26}{48}
\frac{-52}{48} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{13}{12}x=\frac{13}{24}
\frac{26}{48} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{13}{12}x+\left(-\frac{13}{24}\right)^{2}=\frac{13}{24}+\left(-\frac{13}{24}\right)^{2}
-\frac{13}{12} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{13}{24} olish uchun. Keyin, -\frac{13}{24} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{13}{12}x+\frac{169}{576}=\frac{13}{24}+\frac{169}{576}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{13}{24} kvadratini chiqarish.
x^{2}-\frac{13}{12}x+\frac{169}{576}=\frac{481}{576}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{13}{24} ni \frac{169}{576} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{13}{24}\right)^{2}=\frac{481}{576}
x^{2}-\frac{13}{12}x+\frac{169}{576} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{13}{24}\right)^{2}}=\sqrt{\frac{481}{576}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{13}{24}=\frac{\sqrt{481}}{24} x-\frac{13}{24}=-\frac{\sqrt{481}}{24}
Qisqartirish.
x=\frac{\sqrt{481}+13}{24} x=\frac{13-\sqrt{481}}{24}
\frac{13}{24} ni tenglamaning ikkala tarafiga qo'shish.