Omil
12t\left(4-t\right)
Baholash
12t\left(4-t\right)
Baham ko'rish
Klipbordga nusxa olish
12\left(4t-t^{2}\right)
12 omili.
t\left(4-t\right)
Hisoblang: 4t-t^{2}. t omili.
12t\left(-t+4\right)
Toʻliq ajratilgan ifodani qaytadan yozing.
-12t^{2}+48t=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
t=\frac{-48±\sqrt{48^{2}}}{2\left(-12\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-48±48}{2\left(-12\right)}
48^{2} ning kvadrat ildizini chiqarish.
t=\frac{-48±48}{-24}
2 ni -12 marotabaga ko'paytirish.
t=\frac{0}{-24}
t=\frac{-48±48}{-24} tenglamasini yeching, bunda ± musbat. -48 ni 48 ga qo'shish.
t=0
0 ni -24 ga bo'lish.
t=-\frac{96}{-24}
t=\frac{-48±48}{-24} tenglamasini yeching, bunda ± manfiy. -48 dan 48 ni ayirish.
t=4
-96 ni -24 ga bo'lish.
-12t^{2}+48t=-12t\left(t-4\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 0 ga va x_{2} uchun 4 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}