Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

44\times 2=x\left(x-3\right)
Ikkala tarafini 2 ga ko‘paytiring.
88=x\left(x-3\right)
88 hosil qilish uchun 44 va 2 ni ko'paytirish.
88=x^{2}-3x
x ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x=88
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-3x-88=0
Ikkala tarafdan 88 ni ayirish.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-88\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va -88 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-88\right)}}{2}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9+352}}{2}
-4 ni -88 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{361}}{2}
9 ni 352 ga qo'shish.
x=\frac{-\left(-3\right)±19}{2}
361 ning kvadrat ildizini chiqarish.
x=\frac{3±19}{2}
-3 ning teskarisi 3 ga teng.
x=\frac{22}{2}
x=\frac{3±19}{2} tenglamasini yeching, bunda ± musbat. 3 ni 19 ga qo'shish.
x=11
22 ni 2 ga bo'lish.
x=-\frac{16}{2}
x=\frac{3±19}{2} tenglamasini yeching, bunda ± manfiy. 3 dan 19 ni ayirish.
x=-8
-16 ni 2 ga bo'lish.
x=11 x=-8
Tenglama yechildi.
44\times 2=x\left(x-3\right)
Ikkala tarafini 2 ga ko‘paytiring.
88=x\left(x-3\right)
88 hosil qilish uchun 44 va 2 ni ko'paytirish.
88=x^{2}-3x
x ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x=88
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=88+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=88+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{361}{4}
88 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{361}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{19}{2} x-\frac{3}{2}=-\frac{19}{2}
Qisqartirish.
x=11 x=-8
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.