x uchun yechish (complex solution)
x=\frac{1+\sqrt{167}i}{2}\approx 0,5+6,461423992i
x=\frac{-\sqrt{167}i+1}{2}\approx 0,5-6,461423992i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-x+44=2
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-x+44-2=2-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
x^{2}-x+44-2=0
O‘zidan 2 ayirilsa 0 qoladi.
x^{2}-x+42=0
44 dan 2 ni ayirish.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 42}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1 ni b va 42 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-168}}{2}
-4 ni 42 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{-167}}{2}
1 ni -168 ga qo'shish.
x=\frac{-\left(-1\right)±\sqrt{167}i}{2}
-167 ning kvadrat ildizini chiqarish.
x=\frac{1±\sqrt{167}i}{2}
-1 ning teskarisi 1 ga teng.
x=\frac{1+\sqrt{167}i}{2}
x=\frac{1±\sqrt{167}i}{2} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{167} ga qo'shish.
x=\frac{-\sqrt{167}i+1}{2}
x=\frac{1±\sqrt{167}i}{2} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{167} ni ayirish.
x=\frac{1+\sqrt{167}i}{2} x=\frac{-\sqrt{167}i+1}{2}
Tenglama yechildi.
x^{2}-x+44=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-x+44-44=2-44
Tenglamaning ikkala tarafidan 44 ni ayirish.
x^{2}-x=2-44
O‘zidan 44 ayirilsa 0 qoladi.
x^{2}-x=-42
2 dan 44 ni ayirish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-42+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=-42+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=-\frac{167}{4}
-42 ni \frac{1}{4} ga qo'shish.
\left(x-\frac{1}{2}\right)^{2}=-\frac{167}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{167}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{\sqrt{167}i}{2} x-\frac{1}{2}=-\frac{\sqrt{167}i}{2}
Qisqartirish.
x=\frac{1+\sqrt{167}i}{2} x=\frac{-\sqrt{167}i+1}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}