t uchun yechish
t = \frac{61}{11} = 5\frac{6}{11} \approx 5,545454545
t=0
Viktorina
Polynomial
44 t ^ { 2 } - 244 t = 0
Baham ko'rish
Klipbordga nusxa olish
t\left(44t-244\right)=0
t omili.
t=0 t=\frac{61}{11}
Tenglamani yechish uchun t=0 va 44t-244=0 ni yeching.
44t^{2}-244t=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-244\right)±\sqrt{\left(-244\right)^{2}}}{2\times 44}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 44 ni a, -244 ni b va 0 ni c bilan almashtiring.
t=\frac{-\left(-244\right)±244}{2\times 44}
\left(-244\right)^{2} ning kvadrat ildizini chiqarish.
t=\frac{244±244}{2\times 44}
-244 ning teskarisi 244 ga teng.
t=\frac{244±244}{88}
2 ni 44 marotabaga ko'paytirish.
t=\frac{488}{88}
t=\frac{244±244}{88} tenglamasini yeching, bunda ± musbat. 244 ni 244 ga qo'shish.
t=\frac{61}{11}
\frac{488}{88} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t=\frac{0}{88}
t=\frac{244±244}{88} tenglamasini yeching, bunda ± manfiy. 244 dan 244 ni ayirish.
t=0
0 ni 88 ga bo'lish.
t=\frac{61}{11} t=0
Tenglama yechildi.
44t^{2}-244t=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{44t^{2}-244t}{44}=\frac{0}{44}
Ikki tarafini 44 ga bo‘ling.
t^{2}+\left(-\frac{244}{44}\right)t=\frac{0}{44}
44 ga bo'lish 44 ga ko'paytirishni bekor qiladi.
t^{2}-\frac{61}{11}t=\frac{0}{44}
\frac{-244}{44} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t^{2}-\frac{61}{11}t=0
0 ni 44 ga bo'lish.
t^{2}-\frac{61}{11}t+\left(-\frac{61}{22}\right)^{2}=\left(-\frac{61}{22}\right)^{2}
-\frac{61}{11} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{61}{22} olish uchun. Keyin, -\frac{61}{22} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-\frac{61}{11}t+\frac{3721}{484}=\frac{3721}{484}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{61}{22} kvadratini chiqarish.
\left(t-\frac{61}{22}\right)^{2}=\frac{3721}{484}
t^{2}-\frac{61}{11}t+\frac{3721}{484} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{61}{22}\right)^{2}}=\sqrt{\frac{3721}{484}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{61}{22}=\frac{61}{22} t-\frac{61}{22}=-\frac{61}{22}
Qisqartirish.
t=\frac{61}{11} t=0
\frac{61}{22} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}