Baholash
\frac{1679}{45}\approx 37,311111111
Omil
\frac{23 \cdot 73}{3 ^ {2} \cdot 5} = 37\frac{14}{45} = 37,31111111111111
Baham ko'rish
Klipbordga nusxa olish
\frac{41\times 5}{6}+\frac{41-\frac{3\times 15+4}{15}}{12}
41\times \frac{5}{6} ni yagona kasrga aylantiring.
\frac{205}{6}+\frac{41-\frac{3\times 15+4}{15}}{12}
205 hosil qilish uchun 41 va 5 ni ko'paytirish.
\frac{205}{6}+\frac{41-\frac{45+4}{15}}{12}
45 hosil qilish uchun 3 va 15 ni ko'paytirish.
\frac{205}{6}+\frac{41-\frac{49}{15}}{12}
49 olish uchun 45 va 4'ni qo'shing.
\frac{205}{6}+\frac{\frac{615}{15}-\frac{49}{15}}{12}
41 ni \frac{615}{15} kasrga o‘giring.
\frac{205}{6}+\frac{\frac{615-49}{15}}{12}
\frac{615}{15} va \frac{49}{15} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{205}{6}+\frac{\frac{566}{15}}{12}
566 olish uchun 615 dan 49 ni ayirish.
\frac{205}{6}+\frac{566}{15\times 12}
\frac{\frac{566}{15}}{12} ni yagona kasrga aylantiring.
\frac{205}{6}+\frac{566}{180}
180 hosil qilish uchun 15 va 12 ni ko'paytirish.
\frac{205}{6}+\frac{283}{90}
\frac{566}{180} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{3075}{90}+\frac{283}{90}
6 va 90 ning eng kichik umumiy karralisi 90 ga teng. \frac{205}{6} va \frac{283}{90} ni 90 maxraj bilan kasrlarga aylantirib oling.
\frac{3075+283}{90}
\frac{3075}{90} va \frac{283}{90} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{3358}{90}
3358 olish uchun 3075 va 283'ni qo'shing.
\frac{1679}{45}
\frac{3358}{90} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}