x uchun yechish
x=\frac{\sqrt{6}}{20}\approx 0,122474487
x=-\frac{\sqrt{6}}{20}\approx -0,122474487
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(4000+4000x\right)\left(1-x\right)=3940
4000 ga 1+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4000-4000x^{2}=3940
4000+4000x ga 1-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-4000x^{2}=3940-4000
Ikkala tarafdan 4000 ni ayirish.
-4000x^{2}=-60
-60 olish uchun 3940 dan 4000 ni ayirish.
x^{2}=\frac{-60}{-4000}
Ikki tarafini -4000 ga bo‘ling.
x^{2}=\frac{3}{200}
\frac{-60}{-4000} ulushini -20 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{\sqrt{6}}{20} x=-\frac{\sqrt{6}}{20}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\left(4000+4000x\right)\left(1-x\right)=3940
4000 ga 1+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4000-4000x^{2}=3940
4000+4000x ga 1-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4000-4000x^{2}-3940=0
Ikkala tarafdan 3940 ni ayirish.
60-4000x^{2}=0
60 olish uchun 4000 dan 3940 ni ayirish.
-4000x^{2}+60=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-4000\right)\times 60}}{2\left(-4000\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4000 ni a, 0 ni b va 60 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-4000\right)\times 60}}{2\left(-4000\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{16000\times 60}}{2\left(-4000\right)}
-4 ni -4000 marotabaga ko'paytirish.
x=\frac{0±\sqrt{960000}}{2\left(-4000\right)}
16000 ni 60 marotabaga ko'paytirish.
x=\frac{0±400\sqrt{6}}{2\left(-4000\right)}
960000 ning kvadrat ildizini chiqarish.
x=\frac{0±400\sqrt{6}}{-8000}
2 ni -4000 marotabaga ko'paytirish.
x=-\frac{\sqrt{6}}{20}
x=\frac{0±400\sqrt{6}}{-8000} tenglamasini yeching, bunda ± musbat.
x=\frac{\sqrt{6}}{20}
x=\frac{0±400\sqrt{6}}{-8000} tenglamasini yeching, bunda ± manfiy.
x=-\frac{\sqrt{6}}{20} x=\frac{\sqrt{6}}{20}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}