Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

49x^{2}+2x-15=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-2±\sqrt{2^{2}-4\times 49\left(-15\right)}}{2\times 49}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{4-4\times 49\left(-15\right)}}{2\times 49}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-196\left(-15\right)}}{2\times 49}
-4 ni 49 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4+2940}}{2\times 49}
-196 ni -15 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{2944}}{2\times 49}
4 ni 2940 ga qo'shish.
x=\frac{-2±8\sqrt{46}}{2\times 49}
2944 ning kvadrat ildizini chiqarish.
x=\frac{-2±8\sqrt{46}}{98}
2 ni 49 marotabaga ko'paytirish.
x=\frac{8\sqrt{46}-2}{98}
x=\frac{-2±8\sqrt{46}}{98} tenglamasini yeching, bunda ± musbat. -2 ni 8\sqrt{46} ga qo'shish.
x=\frac{4\sqrt{46}-1}{49}
-2+8\sqrt{46} ni 98 ga bo'lish.
x=\frac{-8\sqrt{46}-2}{98}
x=\frac{-2±8\sqrt{46}}{98} tenglamasini yeching, bunda ± manfiy. -2 dan 8\sqrt{46} ni ayirish.
x=\frac{-4\sqrt{46}-1}{49}
-2-8\sqrt{46} ni 98 ga bo'lish.
49x^{2}+2x-15=49\left(x-\frac{4\sqrt{46}-1}{49}\right)\left(x-\frac{-4\sqrt{46}-1}{49}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-1+4\sqrt{46}}{49} ga va x_{2} uchun \frac{-1-4\sqrt{46}}{49} ga bo‘ling.