Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

t\left(44t-244\right)=0
t omili.
t=0 t=\frac{61}{11}
Tenglamani yechish uchun t=0 va 44t-244=0 ni yeching.
44t^{2}-244t=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-244\right)±\sqrt{\left(-244\right)^{2}}}{2\times 44}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 44 ni a, -244 ni b va 0 ni c bilan almashtiring.
t=\frac{-\left(-244\right)±244}{2\times 44}
\left(-244\right)^{2} ning kvadrat ildizini chiqarish.
t=\frac{244±244}{2\times 44}
-244 ning teskarisi 244 ga teng.
t=\frac{244±244}{88}
2 ni 44 marotabaga ko'paytirish.
t=\frac{488}{88}
t=\frac{244±244}{88} tenglamasini yeching, bunda ± musbat. 244 ni 244 ga qo'shish.
t=\frac{61}{11}
\frac{488}{88} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t=\frac{0}{88}
t=\frac{244±244}{88} tenglamasini yeching, bunda ± manfiy. 244 dan 244 ni ayirish.
t=0
0 ni 88 ga bo'lish.
t=\frac{61}{11} t=0
Tenglama yechildi.
44t^{2}-244t=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{44t^{2}-244t}{44}=\frac{0}{44}
Ikki tarafini 44 ga bo‘ling.
t^{2}+\left(-\frac{244}{44}\right)t=\frac{0}{44}
44 ga bo'lish 44 ga ko'paytirishni bekor qiladi.
t^{2}-\frac{61}{11}t=\frac{0}{44}
\frac{-244}{44} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t^{2}-\frac{61}{11}t=0
0 ni 44 ga bo'lish.
t^{2}-\frac{61}{11}t+\left(-\frac{61}{22}\right)^{2}=\left(-\frac{61}{22}\right)^{2}
-\frac{61}{11} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{61}{22} olish uchun. Keyin, -\frac{61}{22} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-\frac{61}{11}t+\frac{3721}{484}=\frac{3721}{484}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{61}{22} kvadratini chiqarish.
\left(t-\frac{61}{22}\right)^{2}=\frac{3721}{484}
t^{2}-\frac{61}{11}t+\frac{3721}{484} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{61}{22}\right)^{2}}=\sqrt{\frac{3721}{484}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{61}{22}=\frac{61}{22} t-\frac{61}{22}=-\frac{61}{22}
Qisqartirish.
t=\frac{61}{11} t=0
\frac{61}{22} ni tenglamaning ikkala tarafiga qo'shish.