Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4-2x^{2}-\frac{2}{3}x=4
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
4-2x^{2}-\frac{2}{3}x-4=0
Ikkala tarafdan 4 ni ayirish.
-2x^{2}-\frac{2}{3}x=0
0 olish uchun 4 dan 4 ni ayirish.
x\left(-2x-\frac{2}{3}\right)=0
x omili.
x=0 x=-\frac{1}{3}
Tenglamani yechish uchun x=0 va -2x-\frac{2}{3}=0 ni yeching.
4-2x^{2}-\frac{2}{3}x=4
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
4-2x^{2}-\frac{2}{3}x-4=0
Ikkala tarafdan 4 ni ayirish.
-2x^{2}-\frac{2}{3}x=0
0 olish uchun 4 dan 4 ni ayirish.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\left(-\frac{2}{3}\right)^{2}}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, -\frac{2}{3} ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-\frac{2}{3}\right)±\frac{2}{3}}{2\left(-2\right)}
\left(-\frac{2}{3}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{\frac{2}{3}±\frac{2}{3}}{2\left(-2\right)}
-\frac{2}{3} ning teskarisi \frac{2}{3} ga teng.
x=\frac{\frac{2}{3}±\frac{2}{3}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{\frac{4}{3}}{-4}
x=\frac{\frac{2}{3}±\frac{2}{3}}{-4} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{2}{3} ni \frac{2}{3} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-\frac{1}{3}
\frac{4}{3} ni -4 ga bo'lish.
x=\frac{0}{-4}
x=\frac{\frac{2}{3}±\frac{2}{3}}{-4} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{2}{3} ni \frac{2}{3} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=0
0 ni -4 ga bo'lish.
x=-\frac{1}{3} x=0
Tenglama yechildi.
4-2x^{2}-\frac{2}{3}x=4
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
-2x^{2}-\frac{2}{3}x=4-4
Ikkala tarafdan 4 ni ayirish.
-2x^{2}-\frac{2}{3}x=0
0 olish uchun 4 dan 4 ni ayirish.
\frac{-2x^{2}-\frac{2}{3}x}{-2}=\frac{0}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\left(-\frac{\frac{2}{3}}{-2}\right)x=\frac{0}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{3}x=\frac{0}{-2}
-\frac{2}{3} ni -2 ga bo'lish.
x^{2}+\frac{1}{3}x=0
0 ni -2 ga bo'lish.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\left(\frac{1}{6}\right)^{2}
\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{6} olish uchun. Keyin, \frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{6} kvadratini chiqarish.
\left(x+\frac{1}{6}\right)^{2}=\frac{1}{36}
x^{2}+\frac{1}{3}x+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{6}=\frac{1}{6} x+\frac{1}{6}=-\frac{1}{6}
Qisqartirish.
x=0 x=-\frac{1}{3}
Tenglamaning ikkala tarafidan \frac{1}{6} ni ayirish.