x uchun yechish
x=4
Grafik
Baham ko'rish
Klipbordga nusxa olish
4-\frac{2}{3}x-\frac{2}{3}\left(-1\right)=x-2
-\frac{2}{3} ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4-\frac{2}{3}x+\frac{2}{3}=x-2
\frac{2}{3} hosil qilish uchun -\frac{2}{3} va -1 ni ko'paytirish.
\frac{12}{3}-\frac{2}{3}x+\frac{2}{3}=x-2
4 ni \frac{12}{3} kasrga o‘giring.
\frac{12+2}{3}-\frac{2}{3}x=x-2
\frac{12}{3} va \frac{2}{3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{14}{3}-\frac{2}{3}x=x-2
14 olish uchun 12 va 2'ni qo'shing.
\frac{14}{3}-\frac{2}{3}x-x=-2
Ikkala tarafdan x ni ayirish.
\frac{14}{3}-\frac{5}{3}x=-2
-\frac{5}{3}x ni olish uchun -\frac{2}{3}x va -x ni birlashtirish.
-\frac{5}{3}x=-2-\frac{14}{3}
Ikkala tarafdan \frac{14}{3} ni ayirish.
-\frac{5}{3}x=-\frac{6}{3}-\frac{14}{3}
-2 ni -\frac{6}{3} kasrga o‘giring.
-\frac{5}{3}x=\frac{-6-14}{3}
-\frac{6}{3} va \frac{14}{3} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
-\frac{5}{3}x=-\frac{20}{3}
-20 olish uchun -6 dan 14 ni ayirish.
x=-\frac{20}{3}\left(-\frac{3}{5}\right)
Ikki tarafini -\frac{3}{5} va teskari kasri -\frac{5}{3} ga ko‘paytiring.
x=\frac{-20\left(-3\right)}{3\times 5}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali -\frac{20}{3} ni -\frac{3}{5} ga ko‘paytiring.
x=\frac{60}{15}
\frac{-20\left(-3\right)}{3\times 5} kasridagi ko‘paytirishlarni bajaring.
x=4
4 ni olish uchun 60 ni 15 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}