x uchun yechish
x = -\frac{10}{9} = -1\frac{1}{9} \approx -1,111111111
x=2
Grafik
Baham ko'rish
Klipbordga nusxa olish
4+36x^{2}+24x=56x+84
4 ga 1+9x^{2}+6x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4+36x^{2}+24x-56x=84
Ikkala tarafdan 56x ni ayirish.
4+36x^{2}-32x=84
-32x ni olish uchun 24x va -56x ni birlashtirish.
4+36x^{2}-32x-84=0
Ikkala tarafdan 84 ni ayirish.
-80+36x^{2}-32x=0
-80 olish uchun 4 dan 84 ni ayirish.
-20+9x^{2}-8x=0
Ikki tarafini 4 ga bo‘ling.
9x^{2}-8x-20=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-8 ab=9\left(-20\right)=-180
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 9x^{2}+ax+bx-20 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-180 2,-90 3,-60 4,-45 5,-36 6,-30 9,-20 10,-18 12,-15
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -180-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-180=-179 2-90=-88 3-60=-57 4-45=-41 5-36=-31 6-30=-24 9-20=-11 10-18=-8 12-15=-3
Har bir juftlik yigʻindisini hisoblang.
a=-18 b=10
Yechim – -8 yigʻindisini beruvchi juftlik.
\left(9x^{2}-18x\right)+\left(10x-20\right)
9x^{2}-8x-20 ni \left(9x^{2}-18x\right)+\left(10x-20\right) sifatida qaytadan yozish.
9x\left(x-2\right)+10\left(x-2\right)
Birinchi guruhda 9x ni va ikkinchi guruhda 10 ni faktordan chiqaring.
\left(x-2\right)\left(9x+10\right)
Distributiv funktsiyasidan foydalangan holda x-2 umumiy terminini chiqaring.
x=2 x=-\frac{10}{9}
Tenglamani yechish uchun x-2=0 va 9x+10=0 ni yeching.
4+36x^{2}+24x=56x+84
4 ga 1+9x^{2}+6x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4+36x^{2}+24x-56x=84
Ikkala tarafdan 56x ni ayirish.
4+36x^{2}-32x=84
-32x ni olish uchun 24x va -56x ni birlashtirish.
4+36x^{2}-32x-84=0
Ikkala tarafdan 84 ni ayirish.
-80+36x^{2}-32x=0
-80 olish uchun 4 dan 84 ni ayirish.
36x^{2}-32x-80=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 36\left(-80\right)}}{2\times 36}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 36 ni a, -32 ni b va -80 ni c bilan almashtiring.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 36\left(-80\right)}}{2\times 36}
-32 kvadratini chiqarish.
x=\frac{-\left(-32\right)±\sqrt{1024-144\left(-80\right)}}{2\times 36}
-4 ni 36 marotabaga ko'paytirish.
x=\frac{-\left(-32\right)±\sqrt{1024+11520}}{2\times 36}
-144 ni -80 marotabaga ko'paytirish.
x=\frac{-\left(-32\right)±\sqrt{12544}}{2\times 36}
1024 ni 11520 ga qo'shish.
x=\frac{-\left(-32\right)±112}{2\times 36}
12544 ning kvadrat ildizini chiqarish.
x=\frac{32±112}{2\times 36}
-32 ning teskarisi 32 ga teng.
x=\frac{32±112}{72}
2 ni 36 marotabaga ko'paytirish.
x=\frac{144}{72}
x=\frac{32±112}{72} tenglamasini yeching, bunda ± musbat. 32 ni 112 ga qo'shish.
x=2
144 ni 72 ga bo'lish.
x=-\frac{80}{72}
x=\frac{32±112}{72} tenglamasini yeching, bunda ± manfiy. 32 dan 112 ni ayirish.
x=-\frac{10}{9}
\frac{-80}{72} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=2 x=-\frac{10}{9}
Tenglama yechildi.
4+36x^{2}+24x=56x+84
4 ga 1+9x^{2}+6x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4+36x^{2}+24x-56x=84
Ikkala tarafdan 56x ni ayirish.
4+36x^{2}-32x=84
-32x ni olish uchun 24x va -56x ni birlashtirish.
36x^{2}-32x=84-4
Ikkala tarafdan 4 ni ayirish.
36x^{2}-32x=80
80 olish uchun 84 dan 4 ni ayirish.
\frac{36x^{2}-32x}{36}=\frac{80}{36}
Ikki tarafini 36 ga bo‘ling.
x^{2}+\left(-\frac{32}{36}\right)x=\frac{80}{36}
36 ga bo'lish 36 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{8}{9}x=\frac{80}{36}
\frac{-32}{36} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{8}{9}x=\frac{20}{9}
\frac{80}{36} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{8}{9}x+\left(-\frac{4}{9}\right)^{2}=\frac{20}{9}+\left(-\frac{4}{9}\right)^{2}
-\frac{8}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{4}{9} olish uchun. Keyin, -\frac{4}{9} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{8}{9}x+\frac{16}{81}=\frac{20}{9}+\frac{16}{81}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{4}{9} kvadratini chiqarish.
x^{2}-\frac{8}{9}x+\frac{16}{81}=\frac{196}{81}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{20}{9} ni \frac{16}{81} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{4}{9}\right)^{2}=\frac{196}{81}
x^{2}-\frac{8}{9}x+\frac{16}{81} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{4}{9}\right)^{2}}=\sqrt{\frac{196}{81}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{4}{9}=\frac{14}{9} x-\frac{4}{9}=-\frac{14}{9}
Qisqartirish.
x=2 x=-\frac{10}{9}
\frac{4}{9} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}