b uchun yechish
b=-\frac{\sqrt{3}\left(x-4\sqrt{3}-7\right)}{3}
x uchun yechish
x=\sqrt{3}\left(4-b\right)+7
Grafik
Baham ko'rish
Klipbordga nusxa olish
4+4\sqrt{3}+3=x+b\sqrt{3}
4\sqrt{3} ni olish uchun 2\sqrt{3} va 2\sqrt{3} ni birlashtirish.
7+4\sqrt{3}=x+b\sqrt{3}
7 olish uchun 4 va 3'ni qo'shing.
x+b\sqrt{3}=7+4\sqrt{3}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
b\sqrt{3}=7+4\sqrt{3}-x
Ikkala tarafdan x ni ayirish.
\sqrt{3}b=-x+4\sqrt{3}+7
Tenglama standart shaklda.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-x+4\sqrt{3}+7}{\sqrt{3}}
Ikki tarafini \sqrt{3} ga bo‘ling.
b=\frac{-x+4\sqrt{3}+7}{\sqrt{3}}
\sqrt{3} ga bo'lish \sqrt{3} ga ko'paytirishni bekor qiladi.
b=\frac{\sqrt{3}\left(-x+4\sqrt{3}+7\right)}{3}
7+4\sqrt{3}-x ni \sqrt{3} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}