Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\sqrt{2}x^{2}=2-4
Ikkala tarafdan 4 ni ayirish.
\sqrt{2}x^{2}=-2
-2 olish uchun 2 dan 4 ni ayirish.
x^{2}=-\frac{2}{\sqrt{2}}
\sqrt{2} ga bo'lish \sqrt{2} ga ko'paytirishni bekor qiladi.
x^{2}=-\sqrt{2}
-2 ni \sqrt{2} ga bo'lish.
x=\sqrt[4]{2}i x=-\sqrt[4]{2}i
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
4+\sqrt{2}x^{2}-2=0
Ikkala tarafdan 2 ni ayirish.
2+\sqrt{2}x^{2}=0
2 olish uchun 4 dan 2 ni ayirish.
\sqrt{2}x^{2}+2=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\sqrt{2}\times 2}}{2\sqrt{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \sqrt{2} ni a, 0 ni b va 2 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\sqrt{2}\times 2}}{2\sqrt{2}}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{\left(-4\sqrt{2}\right)\times 2}}{2\sqrt{2}}
-4 ni \sqrt{2} marotabaga ko'paytirish.
x=\frac{0±\sqrt{-8\sqrt{2}}}{2\sqrt{2}}
-4\sqrt{2} ni 2 marotabaga ko'paytirish.
x=\frac{0±2\times 2^{\frac{3}{4}}i}{2\sqrt{2}}
-8\sqrt{2} ning kvadrat ildizini chiqarish.
x=\frac{2i}{2^{\frac{3}{4}}}
x=\frac{0±2\times 2^{\frac{3}{4}}i}{2\sqrt{2}} tenglamasini yeching, bunda ± musbat.
x=-\sqrt[4]{2}i
x=\frac{0±2\times 2^{\frac{3}{4}}i}{2\sqrt{2}} tenglamasini yeching, bunda ± manfiy.
x=\frac{2i}{2^{\frac{3}{4}}} x=-\sqrt[4]{2}i
Tenglama yechildi.