x uchun yechish (complex solution)
x=-\sqrt[4]{2}i\approx -0-1,189207115i
x=\sqrt[4]{2}i\approx 1,189207115i
Grafik
Viktorina
Algebra
4+ \sqrt{ 2 } { x }^{ 2 } =2
Baham ko'rish
Klipbordga nusxa olish
\sqrt{2}x^{2}=2-4
Ikkala tarafdan 4 ni ayirish.
\sqrt{2}x^{2}=-2
-2 olish uchun 2 dan 4 ni ayirish.
x^{2}=-\frac{2}{\sqrt{2}}
\sqrt{2} ga bo'lish \sqrt{2} ga ko'paytirishni bekor qiladi.
x^{2}=-\sqrt{2}
-2 ni \sqrt{2} ga bo'lish.
x=\sqrt[4]{2}i x=-\sqrt[4]{2}i
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
4+\sqrt{2}x^{2}-2=0
Ikkala tarafdan 2 ni ayirish.
2+\sqrt{2}x^{2}=0
2 olish uchun 4 dan 2 ni ayirish.
\sqrt{2}x^{2}+2=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\sqrt{2}\times 2}}{2\sqrt{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \sqrt{2} ni a, 0 ni b va 2 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\sqrt{2}\times 2}}{2\sqrt{2}}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{\left(-4\sqrt{2}\right)\times 2}}{2\sqrt{2}}
-4 ni \sqrt{2} marotabaga ko'paytirish.
x=\frac{0±\sqrt{-8\sqrt{2}}}{2\sqrt{2}}
-4\sqrt{2} ni 2 marotabaga ko'paytirish.
x=\frac{0±2\times 2^{\frac{3}{4}}i}{2\sqrt{2}}
-8\sqrt{2} ning kvadrat ildizini chiqarish.
x=\frac{2i}{2^{\frac{3}{4}}}
x=\frac{0±2\times 2^{\frac{3}{4}}i}{2\sqrt{2}} tenglamasini yeching, bunda ± musbat.
x=-\sqrt[4]{2}i
x=\frac{0±2\times 2^{\frac{3}{4}}i}{2\sqrt{2}} tenglamasini yeching, bunda ± manfiy.
x=\frac{2i}{2^{\frac{3}{4}}} x=-\sqrt[4]{2}i
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}