z uchun yechish
z = \frac{5 \sqrt{41} - 15}{2} \approx 8,507810594
z=\frac{-5\sqrt{41}-15}{2}\approx -23,507810594
Baham ko'rish
Klipbordga nusxa olish
4z^{2}+60z=800
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
4z^{2}+60z-800=800-800
Tenglamaning ikkala tarafidan 800 ni ayirish.
4z^{2}+60z-800=0
O‘zidan 800 ayirilsa 0 qoladi.
z=\frac{-60±\sqrt{60^{2}-4\times 4\left(-800\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 60 ni b va -800 ni c bilan almashtiring.
z=\frac{-60±\sqrt{3600-4\times 4\left(-800\right)}}{2\times 4}
60 kvadratini chiqarish.
z=\frac{-60±\sqrt{3600-16\left(-800\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
z=\frac{-60±\sqrt{3600+12800}}{2\times 4}
-16 ni -800 marotabaga ko'paytirish.
z=\frac{-60±\sqrt{16400}}{2\times 4}
3600 ni 12800 ga qo'shish.
z=\frac{-60±20\sqrt{41}}{2\times 4}
16400 ning kvadrat ildizini chiqarish.
z=\frac{-60±20\sqrt{41}}{8}
2 ni 4 marotabaga ko'paytirish.
z=\frac{20\sqrt{41}-60}{8}
z=\frac{-60±20\sqrt{41}}{8} tenglamasini yeching, bunda ± musbat. -60 ni 20\sqrt{41} ga qo'shish.
z=\frac{5\sqrt{41}-15}{2}
-60+20\sqrt{41} ni 8 ga bo'lish.
z=\frac{-20\sqrt{41}-60}{8}
z=\frac{-60±20\sqrt{41}}{8} tenglamasini yeching, bunda ± manfiy. -60 dan 20\sqrt{41} ni ayirish.
z=\frac{-5\sqrt{41}-15}{2}
-60-20\sqrt{41} ni 8 ga bo'lish.
z=\frac{5\sqrt{41}-15}{2} z=\frac{-5\sqrt{41}-15}{2}
Tenglama yechildi.
4z^{2}+60z=800
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{4z^{2}+60z}{4}=\frac{800}{4}
Ikki tarafini 4 ga bo‘ling.
z^{2}+\frac{60}{4}z=\frac{800}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
z^{2}+15z=\frac{800}{4}
60 ni 4 ga bo'lish.
z^{2}+15z=200
800 ni 4 ga bo'lish.
z^{2}+15z+\left(\frac{15}{2}\right)^{2}=200+\left(\frac{15}{2}\right)^{2}
15 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{15}{2} olish uchun. Keyin, \frac{15}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
z^{2}+15z+\frac{225}{4}=200+\frac{225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{15}{2} kvadratini chiqarish.
z^{2}+15z+\frac{225}{4}=\frac{1025}{4}
200 ni \frac{225}{4} ga qo'shish.
\left(z+\frac{15}{2}\right)^{2}=\frac{1025}{4}
z^{2}+15z+\frac{225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(z+\frac{15}{2}\right)^{2}}=\sqrt{\frac{1025}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z+\frac{15}{2}=\frac{5\sqrt{41}}{2} z+\frac{15}{2}=-\frac{5\sqrt{41}}{2}
Qisqartirish.
z=\frac{5\sqrt{41}-15}{2} z=\frac{-5\sqrt{41}-15}{2}
Tenglamaning ikkala tarafidan \frac{15}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}