Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4y^{2}-9y-6561=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
y=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\left(-6561\right)}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-9\right)±\sqrt{81-4\times 4\left(-6561\right)}}{2\times 4}
-9 kvadratini chiqarish.
y=\frac{-\left(-9\right)±\sqrt{81-16\left(-6561\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
y=\frac{-\left(-9\right)±\sqrt{81+104976}}{2\times 4}
-16 ni -6561 marotabaga ko'paytirish.
y=\frac{-\left(-9\right)±\sqrt{105057}}{2\times 4}
81 ni 104976 ga qo'shish.
y=\frac{-\left(-9\right)±9\sqrt{1297}}{2\times 4}
105057 ning kvadrat ildizini chiqarish.
y=\frac{9±9\sqrt{1297}}{2\times 4}
-9 ning teskarisi 9 ga teng.
y=\frac{9±9\sqrt{1297}}{8}
2 ni 4 marotabaga ko'paytirish.
y=\frac{9\sqrt{1297}+9}{8}
y=\frac{9±9\sqrt{1297}}{8} tenglamasini yeching, bunda ± musbat. 9 ni 9\sqrt{1297} ga qo'shish.
y=\frac{9-9\sqrt{1297}}{8}
y=\frac{9±9\sqrt{1297}}{8} tenglamasini yeching, bunda ± manfiy. 9 dan 9\sqrt{1297} ni ayirish.
4y^{2}-9y-6561=4\left(y-\frac{9\sqrt{1297}+9}{8}\right)\left(y-\frac{9-9\sqrt{1297}}{8}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{9+9\sqrt{1297}}{8} ga va x_{2} uchun \frac{9-9\sqrt{1297}}{8} ga bo‘ling.