Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4y^{2}-7y+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 4}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -7 ni b va 1 ni c bilan almashtiring.
y=\frac{-\left(-7\right)±\sqrt{49-4\times 4}}{2\times 4}
-7 kvadratini chiqarish.
y=\frac{-\left(-7\right)±\sqrt{49-16}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
y=\frac{-\left(-7\right)±\sqrt{33}}{2\times 4}
49 ni -16 ga qo'shish.
y=\frac{7±\sqrt{33}}{2\times 4}
-7 ning teskarisi 7 ga teng.
y=\frac{7±\sqrt{33}}{8}
2 ni 4 marotabaga ko'paytirish.
y=\frac{\sqrt{33}+7}{8}
y=\frac{7±\sqrt{33}}{8} tenglamasini yeching, bunda ± musbat. 7 ni \sqrt{33} ga qo'shish.
y=\frac{7-\sqrt{33}}{8}
y=\frac{7±\sqrt{33}}{8} tenglamasini yeching, bunda ± manfiy. 7 dan \sqrt{33} ni ayirish.
y=\frac{\sqrt{33}+7}{8} y=\frac{7-\sqrt{33}}{8}
Tenglama yechildi.
4y^{2}-7y+1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4y^{2}-7y+1-1=-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
4y^{2}-7y=-1
O‘zidan 1 ayirilsa 0 qoladi.
\frac{4y^{2}-7y}{4}=-\frac{1}{4}
Ikki tarafini 4 ga bo‘ling.
y^{2}-\frac{7}{4}y=-\frac{1}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
y^{2}-\frac{7}{4}y+\left(-\frac{7}{8}\right)^{2}=-\frac{1}{4}+\left(-\frac{7}{8}\right)^{2}
-\frac{7}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{8} olish uchun. Keyin, -\frac{7}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-\frac{7}{4}y+\frac{49}{64}=-\frac{1}{4}+\frac{49}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{8} kvadratini chiqarish.
y^{2}-\frac{7}{4}y+\frac{49}{64}=\frac{33}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{4} ni \frac{49}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(y-\frac{7}{8}\right)^{2}=\frac{33}{64}
y^{2}-\frac{7}{4}y+\frac{49}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-\frac{7}{8}\right)^{2}}=\sqrt{\frac{33}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-\frac{7}{8}=\frac{\sqrt{33}}{8} y-\frac{7}{8}=-\frac{\sqrt{33}}{8}
Qisqartirish.
y=\frac{\sqrt{33}+7}{8} y=\frac{7-\sqrt{33}}{8}
\frac{7}{8} ni tenglamaning ikkala tarafiga qo'shish.