Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=-24 ab=4\times 27=108
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 4y^{2}+ay+by+27 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-108 -2,-54 -3,-36 -4,-27 -6,-18 -9,-12
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 108-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-108=-109 -2-54=-56 -3-36=-39 -4-27=-31 -6-18=-24 -9-12=-21
Har bir juftlik yigʻindisini hisoblang.
a=-18 b=-6
Yechim – -24 yigʻindisini beruvchi juftlik.
\left(4y^{2}-18y\right)+\left(-6y+27\right)
4y^{2}-24y+27 ni \left(4y^{2}-18y\right)+\left(-6y+27\right) sifatida qaytadan yozish.
2y\left(2y-9\right)-3\left(2y-9\right)
Birinchi guruhda 2y ni va ikkinchi guruhda -3 ni faktordan chiqaring.
\left(2y-9\right)\left(2y-3\right)
Distributiv funktsiyasidan foydalangan holda 2y-9 umumiy terminini chiqaring.
4y^{2}-24y+27=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
y=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 4\times 27}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-24\right)±\sqrt{576-4\times 4\times 27}}{2\times 4}
-24 kvadratini chiqarish.
y=\frac{-\left(-24\right)±\sqrt{576-16\times 27}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
y=\frac{-\left(-24\right)±\sqrt{576-432}}{2\times 4}
-16 ni 27 marotabaga ko'paytirish.
y=\frac{-\left(-24\right)±\sqrt{144}}{2\times 4}
576 ni -432 ga qo'shish.
y=\frac{-\left(-24\right)±12}{2\times 4}
144 ning kvadrat ildizini chiqarish.
y=\frac{24±12}{2\times 4}
-24 ning teskarisi 24 ga teng.
y=\frac{24±12}{8}
2 ni 4 marotabaga ko'paytirish.
y=\frac{36}{8}
y=\frac{24±12}{8} tenglamasini yeching, bunda ± musbat. 24 ni 12 ga qo'shish.
y=\frac{9}{2}
\frac{36}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y=\frac{12}{8}
y=\frac{24±12}{8} tenglamasini yeching, bunda ± manfiy. 24 dan 12 ni ayirish.
y=\frac{3}{2}
\frac{12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
4y^{2}-24y+27=4\left(y-\frac{9}{2}\right)\left(y-\frac{3}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{9}{2} ga va x_{2} uchun \frac{3}{2} ga bo‘ling.
4y^{2}-24y+27=4\times \frac{2y-9}{2}\left(y-\frac{3}{2}\right)
Umumiy maxrajni topib va suratlarni ayirib \frac{9}{2} ni y dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
4y^{2}-24y+27=4\times \frac{2y-9}{2}\times \frac{2y-3}{2}
Umumiy maxrajni topib va suratlarni ayirib \frac{3}{2} ni y dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
4y^{2}-24y+27=4\times \frac{\left(2y-9\right)\left(2y-3\right)}{2\times 2}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{2y-9}{2} ni \frac{2y-3}{2} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
4y^{2}-24y+27=4\times \frac{\left(2y-9\right)\left(2y-3\right)}{4}
2 ni 2 marotabaga ko'paytirish.
4y^{2}-24y+27=\left(2y-9\right)\left(2y-3\right)
4 va 4 ichida eng katta umumiy 4 faktorini bekor qiling.