y uchun yechish
y=\frac{13+\sqrt{407}i}{8}\approx 1,625+2,521780125i
y=\frac{-\sqrt{407}i+13}{8}\approx 1,625-2,521780125i
Baham ko'rish
Klipbordga nusxa olish
4y^{2}-13y+36=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 4\times 36}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -13 ni b va 36 ni c bilan almashtiring.
y=\frac{-\left(-13\right)±\sqrt{169-4\times 4\times 36}}{2\times 4}
-13 kvadratini chiqarish.
y=\frac{-\left(-13\right)±\sqrt{169-16\times 36}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
y=\frac{-\left(-13\right)±\sqrt{169-576}}{2\times 4}
-16 ni 36 marotabaga ko'paytirish.
y=\frac{-\left(-13\right)±\sqrt{-407}}{2\times 4}
169 ni -576 ga qo'shish.
y=\frac{-\left(-13\right)±\sqrt{407}i}{2\times 4}
-407 ning kvadrat ildizini chiqarish.
y=\frac{13±\sqrt{407}i}{2\times 4}
-13 ning teskarisi 13 ga teng.
y=\frac{13±\sqrt{407}i}{8}
2 ni 4 marotabaga ko'paytirish.
y=\frac{13+\sqrt{407}i}{8}
y=\frac{13±\sqrt{407}i}{8} tenglamasini yeching, bunda ± musbat. 13 ni i\sqrt{407} ga qo'shish.
y=\frac{-\sqrt{407}i+13}{8}
y=\frac{13±\sqrt{407}i}{8} tenglamasini yeching, bunda ± manfiy. 13 dan i\sqrt{407} ni ayirish.
y=\frac{13+\sqrt{407}i}{8} y=\frac{-\sqrt{407}i+13}{8}
Tenglama yechildi.
4y^{2}-13y+36=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4y^{2}-13y+36-36=-36
Tenglamaning ikkala tarafidan 36 ni ayirish.
4y^{2}-13y=-36
O‘zidan 36 ayirilsa 0 qoladi.
\frac{4y^{2}-13y}{4}=-\frac{36}{4}
Ikki tarafini 4 ga bo‘ling.
y^{2}-\frac{13}{4}y=-\frac{36}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
y^{2}-\frac{13}{4}y=-9
-36 ni 4 ga bo'lish.
y^{2}-\frac{13}{4}y+\left(-\frac{13}{8}\right)^{2}=-9+\left(-\frac{13}{8}\right)^{2}
-\frac{13}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{13}{8} olish uchun. Keyin, -\frac{13}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-\frac{13}{4}y+\frac{169}{64}=-9+\frac{169}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{13}{8} kvadratini chiqarish.
y^{2}-\frac{13}{4}y+\frac{169}{64}=-\frac{407}{64}
-9 ni \frac{169}{64} ga qo'shish.
\left(y-\frac{13}{8}\right)^{2}=-\frac{407}{64}
y^{2}-\frac{13}{4}y+\frac{169}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-\frac{13}{8}\right)^{2}}=\sqrt{-\frac{407}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-\frac{13}{8}=\frac{\sqrt{407}i}{8} y-\frac{13}{8}=-\frac{\sqrt{407}i}{8}
Qisqartirish.
y=\frac{13+\sqrt{407}i}{8} y=\frac{-\sqrt{407}i+13}{8}
\frac{13}{8} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}