Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4y^{2}+24y-374=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-24±\sqrt{24^{2}-4\times 4\left(-374\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 24 ni b va -374 ni c bilan almashtiring.
y=\frac{-24±\sqrt{576-4\times 4\left(-374\right)}}{2\times 4}
24 kvadratini chiqarish.
y=\frac{-24±\sqrt{576-16\left(-374\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
y=\frac{-24±\sqrt{576+5984}}{2\times 4}
-16 ni -374 marotabaga ko'paytirish.
y=\frac{-24±\sqrt{6560}}{2\times 4}
576 ni 5984 ga qo'shish.
y=\frac{-24±4\sqrt{410}}{2\times 4}
6560 ning kvadrat ildizini chiqarish.
y=\frac{-24±4\sqrt{410}}{8}
2 ni 4 marotabaga ko'paytirish.
y=\frac{4\sqrt{410}-24}{8}
y=\frac{-24±4\sqrt{410}}{8} tenglamasini yeching, bunda ± musbat. -24 ni 4\sqrt{410} ga qo'shish.
y=\frac{\sqrt{410}}{2}-3
-24+4\sqrt{410} ni 8 ga bo'lish.
y=\frac{-4\sqrt{410}-24}{8}
y=\frac{-24±4\sqrt{410}}{8} tenglamasini yeching, bunda ± manfiy. -24 dan 4\sqrt{410} ni ayirish.
y=-\frac{\sqrt{410}}{2}-3
-24-4\sqrt{410} ni 8 ga bo'lish.
y=\frac{\sqrt{410}}{2}-3 y=-\frac{\sqrt{410}}{2}-3
Tenglama yechildi.
4y^{2}+24y-374=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4y^{2}+24y-374-\left(-374\right)=-\left(-374\right)
374 ni tenglamaning ikkala tarafiga qo'shish.
4y^{2}+24y=-\left(-374\right)
O‘zidan -374 ayirilsa 0 qoladi.
4y^{2}+24y=374
0 dan -374 ni ayirish.
\frac{4y^{2}+24y}{4}=\frac{374}{4}
Ikki tarafini 4 ga bo‘ling.
y^{2}+\frac{24}{4}y=\frac{374}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
y^{2}+6y=\frac{374}{4}
24 ni 4 ga bo'lish.
y^{2}+6y=\frac{187}{2}
\frac{374}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y^{2}+6y+3^{2}=\frac{187}{2}+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+6y+9=\frac{187}{2}+9
3 kvadratini chiqarish.
y^{2}+6y+9=\frac{205}{2}
\frac{187}{2} ni 9 ga qo'shish.
\left(y+3\right)^{2}=\frac{205}{2}
y^{2}+6y+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+3\right)^{2}}=\sqrt{\frac{205}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+3=\frac{\sqrt{410}}{2} y+3=-\frac{\sqrt{410}}{2}
Qisqartirish.
y=\frac{\sqrt{410}}{2}-3 y=-\frac{\sqrt{410}}{2}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.