Asosiy tarkibga oʻtish
x, y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x-y-10=0,3x+5y-19=0
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
4x-y-10=0
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
4x-y=10
10 ni tenglamaning ikkala tarafiga qo'shish.
4x=y+10
y ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{1}{4}\left(y+10\right)
Ikki tarafini 4 ga bo‘ling.
x=\frac{1}{4}y+\frac{5}{2}
\frac{1}{4} ni y+10 marotabaga ko'paytirish.
3\left(\frac{1}{4}y+\frac{5}{2}\right)+5y-19=0
\frac{y}{4}+\frac{5}{2} ni x uchun boshqa tenglamada almashtirish, 3x+5y-19=0.
\frac{3}{4}y+\frac{15}{2}+5y-19=0
3 ni \frac{y}{4}+\frac{5}{2} marotabaga ko'paytirish.
\frac{23}{4}y+\frac{15}{2}-19=0
\frac{3y}{4} ni 5y ga qo'shish.
\frac{23}{4}y-\frac{23}{2}=0
\frac{15}{2} ni -19 ga qo'shish.
\frac{23}{4}y=\frac{23}{2}
\frac{23}{2} ni tenglamaning ikkala tarafiga qo'shish.
y=2
Tenglamaning ikki tarafini \frac{23}{4} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{1}{4}\times 2+\frac{5}{2}
2 ni y uchun x=\frac{1}{4}y+\frac{5}{2} da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=\frac{1+5}{2}
\frac{1}{4} ni 2 marotabaga ko'paytirish.
x=3
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{5}{2} ni \frac{1}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=3,y=2
Tizim hal qilindi.
4x-y-10=0,3x+5y-19=0
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}4&-1\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\19\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}4&-1\\3&5\end{matrix}\right))\left(\begin{matrix}4&-1\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&5\end{matrix}\right))\left(\begin{matrix}10\\19\end{matrix}\right)
\left(\begin{matrix}4&-1\\3&5\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&5\end{matrix}\right))\left(\begin{matrix}10\\19\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&5\end{matrix}\right))\left(\begin{matrix}10\\19\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-\left(-3\right)}&-\frac{-1}{4\times 5-\left(-3\right)}\\-\frac{3}{4\times 5-\left(-3\right)}&\frac{4}{4\times 5-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}10\\19\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}&\frac{1}{23}\\-\frac{3}{23}&\frac{4}{23}\end{matrix}\right)\left(\begin{matrix}10\\19\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}\times 10+\frac{1}{23}\times 19\\-\frac{3}{23}\times 10+\frac{4}{23}\times 19\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=3,y=2
x va y matritsa elementlarini chiqarib olish.
4x-y-10=0,3x+5y-19=0
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
3\times 4x+3\left(-1\right)y+3\left(-10\right)=0,4\times 3x+4\times 5y+4\left(-19\right)=0
4x va 3x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 3 ga va ikkinchining har bir tarafidagi barcha shartlarni 4 ga ko'paytiring.
12x-3y-30=0,12x+20y-76=0
Qisqartirish.
12x-12x-3y-20y-30+76=0
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 12x-3y-30=0 dan 12x+20y-76=0 ni ayirish.
-3y-20y-30+76=0
12x ni -12x ga qo'shish. 12x va -12x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-23y-30+76=0
-3y ni -20y ga qo'shish.
-23y+46=0
-30 ni 76 ga qo'shish.
-23y=-46
Tenglamaning ikkala tarafidan 46 ni ayirish.
y=2
Ikki tarafini -23 ga bo‘ling.
3x+5\times 2-19=0
2 ni y uchun 3x+5y-19=0 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
3x+10-19=0
5 ni 2 marotabaga ko'paytirish.
3x-9=0
10 ni -19 ga qo'shish.
3x=9
9 ni tenglamaning ikkala tarafiga qo'shish.
x=3
Ikki tarafini 3 ga bo‘ling.
x=3,y=2
Tizim hal qilindi.