x, y uchun yechish
x=2
y=3
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x-y=5,-4x+5y=7
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
4x-y=5
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
4x=y+5
y ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{1}{4}\left(y+5\right)
Ikki tarafini 4 ga bo‘ling.
x=\frac{1}{4}y+\frac{5}{4}
\frac{1}{4} ni y+5 marotabaga ko'paytirish.
-4\left(\frac{1}{4}y+\frac{5}{4}\right)+5y=7
\frac{5+y}{4} ni x uchun boshqa tenglamada almashtirish, -4x+5y=7.
-y-5+5y=7
-4 ni \frac{5+y}{4} marotabaga ko'paytirish.
4y-5=7
-y ni 5y ga qo'shish.
4y=12
5 ni tenglamaning ikkala tarafiga qo'shish.
y=3
Ikki tarafini 4 ga bo‘ling.
x=\frac{1}{4}\times 3+\frac{5}{4}
3 ni y uchun x=\frac{1}{4}y+\frac{5}{4} da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=\frac{3+5}{4}
\frac{1}{4} ni 3 marotabaga ko'paytirish.
x=2
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{5}{4} ni \frac{3}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=2,y=3
Tizim hal qilindi.
4x-y=5,-4x+5y=7
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-\left(-\left(-4\right)\right)}&-\frac{-1}{4\times 5-\left(-\left(-4\right)\right)}\\-\frac{-4}{4\times 5-\left(-\left(-4\right)\right)}&\frac{4}{4\times 5-\left(-\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}&\frac{1}{16}\\\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}\times 5+\frac{1}{16}\times 7\\\frac{1}{4}\times 5+\frac{1}{4}\times 7\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=2,y=3
x va y matritsa elementlarini chiqarib olish.
4x-y=5,-4x+5y=7
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
-4\times 4x-4\left(-1\right)y=-4\times 5,4\left(-4\right)x+4\times 5y=4\times 7
4x va -4x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni -4 ga va ikkinchining har bir tarafidagi barcha shartlarni 4 ga ko'paytiring.
-16x+4y=-20,-16x+20y=28
Qisqartirish.
-16x+16x+4y-20y=-20-28
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali -16x+4y=-20 dan -16x+20y=28 ni ayirish.
4y-20y=-20-28
-16x ni 16x ga qo'shish. -16x va 16x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-16y=-20-28
4y ni -20y ga qo'shish.
-16y=-48
-20 ni -28 ga qo'shish.
y=3
Ikki tarafini -16 ga bo‘ling.
-4x+5\times 3=7
3 ni y uchun -4x+5y=7 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
-4x+15=7
5 ni 3 marotabaga ko'paytirish.
-4x=-8
Tenglamaning ikkala tarafidan 15 ni ayirish.
x=2
Ikki tarafini -4 ga bo‘ling.
x=2,y=3
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}