x, y uchun yechish
x=5
y = \frac{18}{5} = 3\frac{3}{5} = 3,6
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x-5y=2,x+10y=41
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
4x-5y=2
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
4x=5y+2
5y ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{1}{4}\left(5y+2\right)
Ikki tarafini 4 ga bo‘ling.
x=\frac{5}{4}y+\frac{1}{2}
\frac{1}{4} ni 5y+2 marotabaga ko'paytirish.
\frac{5}{4}y+\frac{1}{2}+10y=41
\frac{5y}{4}+\frac{1}{2} ni x uchun boshqa tenglamada almashtirish, x+10y=41.
\frac{45}{4}y+\frac{1}{2}=41
\frac{5y}{4} ni 10y ga qo'shish.
\frac{45}{4}y=\frac{81}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
y=\frac{18}{5}
Tenglamaning ikki tarafini \frac{45}{4} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{5}{4}\times \frac{18}{5}+\frac{1}{2}
\frac{18}{5} ni y uchun x=\frac{5}{4}y+\frac{1}{2} da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=\frac{9+1}{2}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{5}{4} ni \frac{18}{5} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
x=5
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{9}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=5,y=\frac{18}{5}
Tizim hal qilindi.
4x-5y=2,x+10y=41
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}4&-5\\1&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\41\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}4&-5\\1&10\end{matrix}\right))\left(\begin{matrix}4&-5\\1&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\1&10\end{matrix}\right))\left(\begin{matrix}2\\41\end{matrix}\right)
\left(\begin{matrix}4&-5\\1&10\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\1&10\end{matrix}\right))\left(\begin{matrix}2\\41\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\1&10\end{matrix}\right))\left(\begin{matrix}2\\41\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{4\times 10-\left(-5\right)}&-\frac{-5}{4\times 10-\left(-5\right)}\\-\frac{1}{4\times 10-\left(-5\right)}&\frac{4}{4\times 10-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}2\\41\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}&\frac{1}{9}\\-\frac{1}{45}&\frac{4}{45}\end{matrix}\right)\left(\begin{matrix}2\\41\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}\times 2+\frac{1}{9}\times 41\\-\frac{1}{45}\times 2+\frac{4}{45}\times 41\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\\frac{18}{5}\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=5,y=\frac{18}{5}
x va y matritsa elementlarini chiqarib olish.
4x-5y=2,x+10y=41
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
4x-5y=2,4x+4\times 10y=4\times 41
4x va x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 1 ga va ikkinchining har bir tarafidagi barcha shartlarni 4 ga ko'paytiring.
4x-5y=2,4x+40y=164
Qisqartirish.
4x-4x-5y-40y=2-164
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 4x-5y=2 dan 4x+40y=164 ni ayirish.
-5y-40y=2-164
4x ni -4x ga qo'shish. 4x va -4x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-45y=2-164
-5y ni -40y ga qo'shish.
-45y=-162
2 ni -164 ga qo'shish.
y=\frac{18}{5}
Ikki tarafini -45 ga bo‘ling.
x+10\times \frac{18}{5}=41
\frac{18}{5} ni y uchun x+10y=41 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x+36=41
10 ni \frac{18}{5} marotabaga ko'paytirish.
x=5
Tenglamaning ikkala tarafidan 36 ni ayirish.
x=5,y=\frac{18}{5}
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}