x, y uchun yechish
x=-1
y=2
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x-5y=-14,7x+y=-5
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
4x-5y=-14
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
4x=5y-14
5y ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{1}{4}\left(5y-14\right)
Ikki tarafini 4 ga bo‘ling.
x=\frac{5}{4}y-\frac{7}{2}
\frac{1}{4} ni 5y-14 marotabaga ko'paytirish.
7\left(\frac{5}{4}y-\frac{7}{2}\right)+y=-5
\frac{5y}{4}-\frac{7}{2} ni x uchun boshqa tenglamada almashtirish, 7x+y=-5.
\frac{35}{4}y-\frac{49}{2}+y=-5
7 ni \frac{5y}{4}-\frac{7}{2} marotabaga ko'paytirish.
\frac{39}{4}y-\frac{49}{2}=-5
\frac{35y}{4} ni y ga qo'shish.
\frac{39}{4}y=\frac{39}{2}
\frac{49}{2} ni tenglamaning ikkala tarafiga qo'shish.
y=2
Tenglamaning ikki tarafini \frac{39}{4} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{5}{4}\times 2-\frac{7}{2}
2 ni y uchun x=\frac{5}{4}y-\frac{7}{2} da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=\frac{5-7}{2}
\frac{5}{4} ni 2 marotabaga ko'paytirish.
x=-1
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{7}{2} ni \frac{5}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-1,y=2
Tizim hal qilindi.
4x-5y=-14,7x+y=-5
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}4&-5\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\-5\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}4&-5\\7&1\end{matrix}\right))\left(\begin{matrix}4&-5\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&1\end{matrix}\right))\left(\begin{matrix}-14\\-5\end{matrix}\right)
\left(\begin{matrix}4&-5\\7&1\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&1\end{matrix}\right))\left(\begin{matrix}-14\\-5\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&1\end{matrix}\right))\left(\begin{matrix}-14\\-5\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-5\times 7\right)}&-\frac{-5}{4-\left(-5\times 7\right)}\\-\frac{7}{4-\left(-5\times 7\right)}&\frac{4}{4-\left(-5\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-14\\-5\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{39}&\frac{5}{39}\\-\frac{7}{39}&\frac{4}{39}\end{matrix}\right)\left(\begin{matrix}-14\\-5\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{39}\left(-14\right)+\frac{5}{39}\left(-5\right)\\-\frac{7}{39}\left(-14\right)+\frac{4}{39}\left(-5\right)\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=-1,y=2
x va y matritsa elementlarini chiqarib olish.
4x-5y=-14,7x+y=-5
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
7\times 4x+7\left(-5\right)y=7\left(-14\right),4\times 7x+4y=4\left(-5\right)
4x va 7x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 7 ga va ikkinchining har bir tarafidagi barcha shartlarni 4 ga ko'paytiring.
28x-35y=-98,28x+4y=-20
Qisqartirish.
28x-28x-35y-4y=-98+20
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 28x-35y=-98 dan 28x+4y=-20 ni ayirish.
-35y-4y=-98+20
28x ni -28x ga qo'shish. 28x va -28x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-39y=-98+20
-35y ni -4y ga qo'shish.
-39y=-78
-98 ni 20 ga qo'shish.
y=2
Ikki tarafini -39 ga bo‘ling.
7x+2=-5
2 ni y uchun 7x+y=-5 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
7x=-7
Tenglamaning ikkala tarafidan 2 ni ayirish.
x=-1
Ikki tarafini 7 ga bo‘ling.
x=-1,y=2
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}