x, y uchun yechish
x=-1
y=-2
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x-3y=2,x+5y=-11
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
4x-3y=2
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
4x=3y+2
3y ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{1}{4}\left(3y+2\right)
Ikki tarafini 4 ga bo‘ling.
x=\frac{3}{4}y+\frac{1}{2}
\frac{1}{4} ni 3y+2 marotabaga ko'paytirish.
\frac{3}{4}y+\frac{1}{2}+5y=-11
\frac{3y}{4}+\frac{1}{2} ni x uchun boshqa tenglamada almashtirish, x+5y=-11.
\frac{23}{4}y+\frac{1}{2}=-11
\frac{3y}{4} ni 5y ga qo'shish.
\frac{23}{4}y=-\frac{23}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
y=-2
Tenglamaning ikki tarafini \frac{23}{4} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{3}{4}\left(-2\right)+\frac{1}{2}
-2 ni y uchun x=\frac{3}{4}y+\frac{1}{2} da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=\frac{-3+1}{2}
\frac{3}{4} ni -2 marotabaga ko'paytirish.
x=-1
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni -\frac{3}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-1,y=-2
Tizim hal qilindi.
4x-3y=2,x+5y=-11
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}4&-3\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-11\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}4&-3\\1&5\end{matrix}\right))\left(\begin{matrix}4&-3\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&5\end{matrix}\right))\left(\begin{matrix}2\\-11\end{matrix}\right)
\left(\begin{matrix}4&-3\\1&5\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&5\end{matrix}\right))\left(\begin{matrix}2\\-11\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&5\end{matrix}\right))\left(\begin{matrix}2\\-11\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-\left(-3\right)}&-\frac{-3}{4\times 5-\left(-3\right)}\\-\frac{1}{4\times 5-\left(-3\right)}&\frac{4}{4\times 5-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}2\\-11\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}&\frac{3}{23}\\-\frac{1}{23}&\frac{4}{23}\end{matrix}\right)\left(\begin{matrix}2\\-11\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}\times 2+\frac{3}{23}\left(-11\right)\\-\frac{1}{23}\times 2+\frac{4}{23}\left(-11\right)\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=-1,y=-2
x va y matritsa elementlarini chiqarib olish.
4x-3y=2,x+5y=-11
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
4x-3y=2,4x+4\times 5y=4\left(-11\right)
4x va x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 1 ga va ikkinchining har bir tarafidagi barcha shartlarni 4 ga ko'paytiring.
4x-3y=2,4x+20y=-44
Qisqartirish.
4x-4x-3y-20y=2+44
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 4x-3y=2 dan 4x+20y=-44 ni ayirish.
-3y-20y=2+44
4x ni -4x ga qo'shish. 4x va -4x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-23y=2+44
-3y ni -20y ga qo'shish.
-23y=46
2 ni 44 ga qo'shish.
y=-2
Ikki tarafini -23 ga bo‘ling.
x+5\left(-2\right)=-11
-2 ni y uchun x+5y=-11 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x-10=-11
5 ni -2 marotabaga ko'paytirish.
x=-1
10 ni tenglamaning ikkala tarafiga qo'shish.
x=-1,y=-2
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}