x uchun yechish (complex solution)
x=-\frac{\sqrt{10}i}{2}+1\approx 1-1,58113883i
x=\frac{\sqrt{10}i}{2}+1\approx 1+1,58113883i
Grafik
Baham ko'rish
Klipbordga nusxa olish
-2x^{2}+4x=7
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-2x^{2}+4x-7=7-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
-2x^{2}+4x-7=0
O‘zidan 7 ayirilsa 0 qoladi.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\left(-7\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 4 ni b va -7 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\left(-2\right)\left(-7\right)}}{2\left(-2\right)}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+8\left(-7\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16-56}}{2\left(-2\right)}
8 ni -7 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{-40}}{2\left(-2\right)}
16 ni -56 ga qo'shish.
x=\frac{-4±2\sqrt{10}i}{2\left(-2\right)}
-40 ning kvadrat ildizini chiqarish.
x=\frac{-4±2\sqrt{10}i}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{-4+2\sqrt{10}i}{-4}
x=\frac{-4±2\sqrt{10}i}{-4} tenglamasini yeching, bunda ± musbat. -4 ni 2i\sqrt{10} ga qo'shish.
x=-\frac{\sqrt{10}i}{2}+1
-4+2i\sqrt{10} ni -4 ga bo'lish.
x=\frac{-2\sqrt{10}i-4}{-4}
x=\frac{-4±2\sqrt{10}i}{-4} tenglamasini yeching, bunda ± manfiy. -4 dan 2i\sqrt{10} ni ayirish.
x=\frac{\sqrt{10}i}{2}+1
-4-2i\sqrt{10} ni -4 ga bo'lish.
x=-\frac{\sqrt{10}i}{2}+1 x=\frac{\sqrt{10}i}{2}+1
Tenglama yechildi.
-2x^{2}+4x=7
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+4x}{-2}=\frac{7}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{4}{-2}x=\frac{7}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-2x=\frac{7}{-2}
4 ni -2 ga bo'lish.
x^{2}-2x=-\frac{7}{2}
7 ni -2 ga bo'lish.
x^{2}-2x+1=-\frac{7}{2}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=-\frac{5}{2}
-\frac{7}{2} ni 1 ga qo'shish.
\left(x-1\right)^{2}=-\frac{5}{2}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{5}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{\sqrt{10}i}{2} x-1=-\frac{\sqrt{10}i}{2}
Qisqartirish.
x=\frac{\sqrt{10}i}{2}+1 x=-\frac{\sqrt{10}i}{2}+1
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}