x uchun yechish
x=7
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x^{2}-12x=16x
4x ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}-12x-16x=0
Ikkala tarafdan 16x ni ayirish.
4x^{2}-28x=0
-28x ni olish uchun -12x va -16x ni birlashtirish.
x\left(4x-28\right)=0
x omili.
x=0 x=7
Tenglamani yechish uchun x=0 va 4x-28=0 ni yeching.
4x^{2}-12x=16x
4x ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}-12x-16x=0
Ikkala tarafdan 16x ni ayirish.
4x^{2}-28x=0
-28x ni olish uchun -12x va -16x ni birlashtirish.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -28 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-28\right)±28}{2\times 4}
\left(-28\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{28±28}{2\times 4}
-28 ning teskarisi 28 ga teng.
x=\frac{28±28}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{56}{8}
x=\frac{28±28}{8} tenglamasini yeching, bunda ± musbat. 28 ni 28 ga qo'shish.
x=7
56 ni 8 ga bo'lish.
x=\frac{0}{8}
x=\frac{28±28}{8} tenglamasini yeching, bunda ± manfiy. 28 dan 28 ni ayirish.
x=0
0 ni 8 ga bo'lish.
x=7 x=0
Tenglama yechildi.
4x^{2}-12x=16x
4x ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}-12x-16x=0
Ikkala tarafdan 16x ni ayirish.
4x^{2}-28x=0
-28x ni olish uchun -12x va -16x ni birlashtirish.
\frac{4x^{2}-28x}{4}=\frac{0}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{28}{4}\right)x=\frac{0}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-7x=\frac{0}{4}
-28 ni 4 ga bo'lish.
x^{2}-7x=0
0 ni 4 ga bo'lish.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
-7 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{2} olish uchun. Keyin, -\frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-7x+\frac{49}{4}=\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{2} kvadratini chiqarish.
\left(x-\frac{7}{2}\right)^{2}=\frac{49}{4}
x^{2}-7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{2}=\frac{7}{2} x-\frac{7}{2}=-\frac{7}{2}
Qisqartirish.
x=7 x=0
\frac{7}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}