Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}+20x=6x-4x^{2}
4x ga x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+20x-6x=-4x^{2}
Ikkala tarafdan 6x ni ayirish.
4x^{2}+14x=-4x^{2}
14x ni olish uchun 20x va -6x ni birlashtirish.
4x^{2}+14x+4x^{2}=0
4x^{2} ni ikki tarafga qo’shing.
8x^{2}+14x=0
8x^{2} ni olish uchun 4x^{2} va 4x^{2} ni birlashtirish.
x\left(8x+14\right)=0
x omili.
x=0 x=-\frac{7}{4}
Tenglamani yechish uchun x=0 va 8x+14=0 ni yeching.
4x^{2}+20x=6x-4x^{2}
4x ga x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+20x-6x=-4x^{2}
Ikkala tarafdan 6x ni ayirish.
4x^{2}+14x=-4x^{2}
14x ni olish uchun 20x va -6x ni birlashtirish.
4x^{2}+14x+4x^{2}=0
4x^{2} ni ikki tarafga qo’shing.
8x^{2}+14x=0
8x^{2} ni olish uchun 4x^{2} va 4x^{2} ni birlashtirish.
x=\frac{-14±\sqrt{14^{2}}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, 14 ni b va 0 ni c bilan almashtiring.
x=\frac{-14±14}{2\times 8}
14^{2} ning kvadrat ildizini chiqarish.
x=\frac{-14±14}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{0}{16}
x=\frac{-14±14}{16} tenglamasini yeching, bunda ± musbat. -14 ni 14 ga qo'shish.
x=0
0 ni 16 ga bo'lish.
x=-\frac{28}{16}
x=\frac{-14±14}{16} tenglamasini yeching, bunda ± manfiy. -14 dan 14 ni ayirish.
x=-\frac{7}{4}
\frac{-28}{16} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=-\frac{7}{4}
Tenglama yechildi.
4x^{2}+20x=6x-4x^{2}
4x ga x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+20x-6x=-4x^{2}
Ikkala tarafdan 6x ni ayirish.
4x^{2}+14x=-4x^{2}
14x ni olish uchun 20x va -6x ni birlashtirish.
4x^{2}+14x+4x^{2}=0
4x^{2} ni ikki tarafga qo’shing.
8x^{2}+14x=0
8x^{2} ni olish uchun 4x^{2} va 4x^{2} ni birlashtirish.
\frac{8x^{2}+14x}{8}=\frac{0}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}+\frac{14}{8}x=\frac{0}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{7}{4}x=\frac{0}{8}
\frac{14}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{7}{4}x=0
0 ni 8 ga bo'lish.
x^{2}+\frac{7}{4}x+\left(\frac{7}{8}\right)^{2}=\left(\frac{7}{8}\right)^{2}
\frac{7}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{8} olish uchun. Keyin, \frac{7}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{49}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{8} kvadratini chiqarish.
\left(x+\frac{7}{8}\right)^{2}=\frac{49}{64}
x^{2}+\frac{7}{4}x+\frac{49}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{8}=\frac{7}{8} x+\frac{7}{8}=-\frac{7}{8}
Qisqartirish.
x=0 x=-\frac{7}{4}
Tenglamaning ikkala tarafidan \frac{7}{8} ni ayirish.