Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

8x^{2}+4x=0
4x ga 2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\left(8x+4\right)=0
x omili.
x=0 x=-\frac{1}{2}
Tenglamani yechish uchun x=0 va 8x+4=0 ni yeching.
8x^{2}+4x=0
4x ga 2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x=\frac{-4±\sqrt{4^{2}}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, 4 ni b va 0 ni c bilan almashtiring.
x=\frac{-4±4}{2\times 8}
4^{2} ning kvadrat ildizini chiqarish.
x=\frac{-4±4}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{0}{16}
x=\frac{-4±4}{16} tenglamasini yeching, bunda ± musbat. -4 ni 4 ga qo'shish.
x=0
0 ni 16 ga bo'lish.
x=-\frac{8}{16}
x=\frac{-4±4}{16} tenglamasini yeching, bunda ± manfiy. -4 dan 4 ni ayirish.
x=-\frac{1}{2}
\frac{-8}{16} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=-\frac{1}{2}
Tenglama yechildi.
8x^{2}+4x=0
4x ga 2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{8x^{2}+4x}{8}=\frac{0}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}+\frac{4}{8}x=\frac{0}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{2}x=\frac{0}{8}
\frac{4}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{2}x=0
0 ni 8 ga bo'lish.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}
\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{4} olish uchun. Keyin, \frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{4} kvadratini chiqarish.
\left(x+\frac{1}{4}\right)^{2}=\frac{1}{16}
x^{2}+\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{4}=\frac{1}{4} x+\frac{1}{4}=-\frac{1}{4}
Qisqartirish.
x=0 x=-\frac{1}{2}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.