Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-x-2x=0
Ikkala tarafdan 2x ni ayirish.
4x^{2}-3x=0
-3x ni olish uchun -x va -2x ni birlashtirish.
x\left(4x-3\right)=0
x omili.
x=0 x=\frac{3}{4}
Tenglamani yechish uchun x=0 va 4x-3=0 ni yeching.
4x^{2}-x-2x=0
Ikkala tarafdan 2x ni ayirish.
4x^{2}-3x=0
-3x ni olish uchun -x va -2x ni birlashtirish.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -3 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±3}{2\times 4}
\left(-3\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{3±3}{2\times 4}
-3 ning teskarisi 3 ga teng.
x=\frac{3±3}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{6}{8}
x=\frac{3±3}{8} tenglamasini yeching, bunda ± musbat. 3 ni 3 ga qo'shish.
x=\frac{3}{4}
\frac{6}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{8}
x=\frac{3±3}{8} tenglamasini yeching, bunda ± manfiy. 3 dan 3 ni ayirish.
x=0
0 ni 8 ga bo'lish.
x=\frac{3}{4} x=0
Tenglama yechildi.
4x^{2}-x-2x=0
Ikkala tarafdan 2x ni ayirish.
4x^{2}-3x=0
-3x ni olish uchun -x va -2x ni birlashtirish.
\frac{4x^{2}-3x}{4}=\frac{0}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}-\frac{3}{4}x=\frac{0}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{3}{4}x=0
0 ni 4 ga bo'lish.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\left(-\frac{3}{8}\right)^{2}
-\frac{3}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{8} olish uchun. Keyin, -\frac{3}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{9}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{8} kvadratini chiqarish.
\left(x-\frac{3}{8}\right)^{2}=\frac{9}{64}
x^{2}-\frac{3}{4}x+\frac{9}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{9}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{8}=\frac{3}{8} x-\frac{3}{8}=-\frac{3}{8}
Qisqartirish.
x=\frac{3}{4} x=0
\frac{3}{8} ni tenglamaning ikkala tarafiga qo'shish.